![\bold{\huge{\underline{ Solution }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jdi2w7914cic76zpb2xuxp7e51pz44d9g8.png)
Given :-
- Here, we have four exterior angles of the quadrilateral that is 9x° , 4x° , (5x - 10)° , (5x + 25)°
To Find :-
- We have to find the measurement of all the exterior angles
Let's Begin :-
Here, we have
- Angle ABD = 9x°
- Angle CDB = 4x°
- Angle HGE = (5x - 10)°
- Angle DEG = ( 5x + 25)°
We know that,
- Sum of interior angle and exterior angle is equal to 180°
Therefore,
Interior angles of the given quadrilateral
- Angle B= 180° - 9x°
- Angle D = 180° - 4x°
- Angle E = 180° - ( 5x + 25)°
- Angle G = 180° - ( 5x - 10)°
We also know that,
- The sum of angles of quadrilateral is 360°
That is,
![\bold{ {\angle} B + {\angle } D + {\angle} E + {\angle } G = 360{\degree} }](https://img.qammunity.org/2023/formulas/mathematics/high-school/a59n4bi09ucrgcpm7wazdckjwm5vue1o1a.png)
Subsitute the required values,
![\sf{ ( 180 - 9x){\degree} + (180 - 4x){\degree} + (180 - (5x + 25)){\degree} + (180 - (5x - 10){\degree} = 360{\degree}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7865h6pay5kbsqhvvb9us8ggqfperblja4.png)
![\sf{ 180 - 9x + 180 - 4x + 180 - 5x - 25 + 180 - 5x + 10 = 360{\degree}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/chslt45qg9qcrlzjco9hji9g7jar4kucgp.png)
![\sf{ 180 + 180 + 180 + 180 - 9x - 4x - 5x - 5x -25 + 10 = 360{\degree}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xnm8fwn6hrj7t9dfoxhwuocvkh2bhih6kp.png)
![\sf{ 720 - 23x - 15 = 360{\degree}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7d05fkm9txxi4p2dmgnt3x0yez9xm8cnm1.png)
![\sf{ 705 - 23x = 360{\degree}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wzokbt1g0am5a57rkvwsjhm4dg081osdf0.png)
![\sf{ 705 - 360 = 23x }](https://img.qammunity.org/2023/formulas/mathematics/high-school/1oak4m118cjud9cv3169ieio1khdohqtv2.png)
![\sf{ 23x = 345 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/sdckqs0zulczi2hohahwnqopms65kq99s1.png)
![\sf{ x = }{\sf{( 345)/(25)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lpadgqhs7wiqufeo0v4ha1h02sg5udo65p.png)
![\sf{ x = }{\sf{\cancel{( 345)/(25)}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u7oaqayokghef94wed2z4m5ttc73iclh29.png)
![\bold{ x = 15 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/xbxbproug7nrorjjc2o260uvdix489n8lj.png)
Thus, The value of x is 15°
Therefore,
All the exterior angles of the given quadrilateral are :-
Angle ABD
![\sf{ = 9(15) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/kicbsniypv5jtptoe1tyl9ac5qkfwf2q6u.png)
![\bold{ = 135{\degree}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tckt4eu43lt0bcnkqix9hqthrs0vzkaq2j.png)
Angle CDB
![\sf{ = 4(15) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/jedpvxjjg0tlr2kakq9efhabn5avoyrf5k.png)
![\bold{ = 60{\degree}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8j7n291clw95se2piiur607f2d2qsagp07.png)
Angle HGE
![\sf{ = 5(15) - 10 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/qhju2u3umzyrodzvk9r6dnjw0lv5l0ob4k.png)
![\sf{ = 75 - 10 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/eriquxj5i2ozznqo1s3c998iopduh8cuin.png)
![\bold{ = 65 {\degree}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mjsrpgvn22nmxs98enu8xutnh9cm997hyk.png)
Angle DEG
![\sf{ = 5(15) + 25 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/xww9esn2q4h78rvd0ogby0ecnu2i7ffmjx.png)
![\sf{ = 75 + 25 }](https://img.qammunity.org/2023/formulas/mathematics/high-school/y9ee5sps6a81bykhz4jlh8iokcqz0a2hwg.png)
![\bold{ = 100 {\degree}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5913r4civtth3hpo6kvznfbaivzo48nevr.png)
Hence, All the exterior angles of the given quadrilateral are 135° , 60° , 65° and 100°