Answer:
a) 75.8% of students would score less than 550 in a typical year.
b) The comparable standard would be a minimum ACT score of 22.2.
c) 0.0139 = 1.39% probability that a randomly selected student will score over 700 on the SAT math test.
Explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Question a:
SAT, so mean of 480 and standard deviation of 100, that is,

The proportion is the p-value of Z when X = 550. So



has a p-value of 0.758.
0.758*100% = 75.8%
75.8% of students would score less than 550 in a typical year.
b. What would the engineering school set as comparable standard on the ACT math test?
ACT, with a mean of 18 and a standard deviation of 6, so

The comparable score is X when Z = 0.7. So




The comparable standard would be a minimum ACT score of 22.2.
c. What is the probability that a randomly selected student will score over 700 on the SAT math test?
This is 1 subtracted by the p-value of Z when X = 700, so:



has a p-value of 0.9861.
1 - 0.9861 = 0.0139
0.0139 = 1.39% probability that a randomly selected student will score over 700 on the SAT math test.