76.9k views
4 votes
Find formula of s in terms of a, b, cos(x)

Find formula of s in terms of a, b, cos(x)-example-1
User Harishr
by
4.0k points

1 Answer

3 votes

Answer:


\displaystyle s = (2ab\cos x)/(a+b)

Explanation:

We want to find a formula for s in terms of a, b, and cos(x).

Let the point where s intersects AB be D.

Notice that s bisects ∠C. Then by the Angle Bisector Theorem:


\displaystyle (a)/(BD) = (b)/(AD)

We can find BD using the Law of Cosines:


\displaystyle BD^2 = a^2 + s^2 - 2as \cos x

Likewise:


\displaystyle AD^2 = b^2+ s^2 - 2bs \cos x

From the first equation, cross-multiply:


bBD = a AD

And square both sides:


b^2 BD^2 =a^2 AD^2

Substitute:


\displaystyle b^2 \left(a^2 + s^2 - 2as \cos x\right) = a^2 \left(b^2 + s^2 - 2bs \cos x\right)

Distribute:


a^2b^2 + b^2s^2 - 2ab^2 s\cos x = a^2b^2 + a^2s^2 - 2a^2 bs\cos x

Simplify:


b^2 s^2 - 2ab^2 s \cos x = a^2 s^2 - 2a^2 b s \cos x

Divide both sides by s (s ≠ 0):


b^2 s -2ab^2 \cos x = a^2 s - 2a^2 b \cos x

Isolate s:


b^2 s - a^2s = -2a^2 b \cos x + 2ab^2 \cos x

Factor:


\displaystyle s (b^2 - a^2) = 2ab^2 \cos x - 2a^2 b \cos x

Therefore:


\displaystyle s = (2ab^2 \cos x - 2a^2 b \cos x)/(b^2- a^2)

Factor:


\displaystyle s = (2ab\cos x(b - a))/((b-a)(b+a))

Simplify. Therefore:


\displaystyle s = (2ab\cos x)/(a+b)

User EddyLee
by
4.5k points