Answer:
See explanation.
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Functions
- Exponential Property [Rewrite]:
![\displaystyle b^(-m) = (1)/(b^m)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u1reolge2a6odf3mp4zy8kkmymeathpr44.png)
- Exponential Property [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{(1)/(n)}](https://img.qammunity.org/2022/formulas/mathematics/college/yqpyvbuov0tgbjo8vla0qsqp67pafn2fr7.png)
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rwpyhrof52dro5d128gleq5obchnuu5qkj.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2022/formulas/mathematics/high-school/i90hl6t3gcguvrecodn8t9gnodav0w5ns8.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
We are given the following and are trying to find the second derivative at x = 2:
![\displaystyle f(2) = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/743fwcb5zdgtjgxewfel114x13slei8c4b.png)
![\displaystyle (dy)/(dx) = 6√(x^2 + 3y^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3ba8kt8zgljb1uqxp4l46tqqv3x0nun558.png)
We can differentiate the 1st derivative to obtain the 2nd derivative. Let's start by rewriting the 1st derivative:
![\displaystyle (dy)/(dx) = 6(x^2 + 3y^2)^\big{(1)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/w9zd9noatogbucc0grhn2iczrwdplk5i17.png)
When we differentiate this, we must follow the Chain Rule:
![\displaystyle (d^2y)/(dx^2) = (d)/(dx) \Big[ 6(x^2 + 3y^2)^\big{(1)/(2)} \Big] \cdot (d)/(dx) \Big[ (x^2 + 3y^2) \Big]](https://img.qammunity.org/2022/formulas/mathematics/high-school/5xgrzuz4vbn0leya78t7zve0bvkezvk98h.png)
Use the Basic Power Rule:
![\displaystyle (d^2y)/(dx^2) = 3(x^2 + 3y^2)^\big{(-1)/(2)} (2x + 6yy')](https://img.qammunity.org/2022/formulas/mathematics/high-school/rzoww5zsl7ey7ew9er1wi6gq88d3a9twga.png)
We know that y' is the notation for the 1st derivative. Substitute in the 1st derivative equation:
![\displaystyle (d^2y)/(dx^2) = 3(x^2 + 3y^2)^\big{(-1)/(2)} \big[ 2x + 6y(6√(x^2 + 3y^2)) \big]](https://img.qammunity.org/2022/formulas/mathematics/high-school/amldk12amjvdwakluv1fw16cszifazbuqy.png)
Simplifying it, we have:
![\displaystyle (d^2y)/(dx^2) = 3(x^2 + 3y^2)^\big{(-1)/(2)} \big[ 2x + 36y√(x^2 + 3y^2) \big]](https://img.qammunity.org/2022/formulas/mathematics/high-school/beinahytkzztkac8zwquxujnclhdj79div.png)
We can rewrite the 2nd derivative using exponential rules:
![\displaystyle (d^2y)/(dx^2) = (3\big[ 2x + 36y√(x^2 + 3y^2) \big])/(√(x^2 + 3y^2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/qtlkvpelj93on2qi9q1mual4tmtyc2uc0z.png)
To evaluate the 2nd derivative at x = 2, simply substitute in x = 2 and the value f(2) = 2 into it:
![\displaystyle (d^2y)/(dx^2) \bigg| \limits_(x = 2) = (3\big[ 2(2) + 36(2)√(2^2 + 3(2)^2) \big])/(√(2^2 + 3(2)^2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/8yp7bykraw82q4qnv0n7ppb998yr6j7zby.png)
When we evaluate this using order of operations, we should obtain our answer:
![\displaystyle (d^2y)/(dx^2) \bigg| \limits_(x = 2) = 219](https://img.qammunity.org/2022/formulas/mathematics/high-school/leufljrbulrkjuw7sswskif9ayh3o31ljm.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation