Answer:
Stationary matrix S = [ 0.6 0.4 ]
limiting matrix P =
![\left[\begin{array}{ccc}0.6&0.4\\0.6&0.4\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/wnn250kr8czy92en5m4552hgto3iidebkq.png)
Explanation:
Transition matrix
![p = \left[\begin{array}{ccc}0.8&0.2\\0.3&0.7\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/851k19qa52rstupypi5gu2rcfkh44bdfon.png)
solving the equation SP = S ( using Markova chain with 2 states )
stationary matrix, S = [ a , 1 - a ]
given that SP = S
[ a , 1 - a ] *
= [ a , 1 - a ]
= a*(0.8) + ( 1 - a ) ( 0.3 ) = a
∴ a = 0.6
hence; stationary matrix S = [ 0.6 0.4 ]
limiting matrix P =
![\left[\begin{array}{ccc}0.6&0.4\\0.6&0.4\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/wnn250kr8czy92en5m4552hgto3iidebkq.png)