Answer:
Explanation:
By applying tangent rule in the given right triangle AOB,
tan(30°) =
![\frac{\text{Opposite side}}{\text{Adjacent side}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/vukhjusqid9fxo3jewnsqt435z0du43agl.png)
![(1)/(√(3))=(BO)/(OA)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3ctbiux6woi94hfa8qnj16uxln2tk8s2xx.png)
![OA=BO(√(3))](https://img.qammunity.org/2022/formulas/mathematics/high-school/33e165kz9jluh0x8gqdnucmmcav4scg473.png)
By applying tangent rule in the given right triangle BOC,
tan(60°) =
![(OC)/(BO)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6fzj52s8zmnz4s3a5ewumiiixhs2gke3cp.png)
OC = BO(√3)
OA + OC = AC
![BO(√(3))+BO(√(3)) =60](https://img.qammunity.org/2022/formulas/mathematics/high-school/cmhnxfwh3jx95pizpaoue7xqgl7m6tfv7b.png)
2√3(BO) = 60
BO = 10√3
OC = BO(√3)
OC = (10√3)(√3)
OC = 30
By applying tangent rule in right triangle DOC,
tan(60°) =
![(OD)/(OC)](https://img.qammunity.org/2022/formulas/mathematics/high-school/do5ulzda2xggtdx9nelfo4tq5971zbcd09.png)
OD = OC(√3)
OD = 30√3
Since, BD = BO + OD
BD = 10√3 + 30√3
BD = 40√3
≈ 69.3