Answer:
See explanation
Explanation:
Given
![\triangle LMN \to \triangle PQR](https://img.qammunity.org/2022/formulas/mathematics/high-school/9ji5wl4otrdzsnxpgnxa6mnrrjfkd0h8lj.png)
![k = 1.25](https://img.qammunity.org/2022/formulas/mathematics/high-school/mvxc69ka0vf4ofatc5ei1ezwsqfo1xvi3c.png)
Required
The length of PQ
means that the side lengths of LMN are multiplied by 1.25 to get the side lengths of PQR
And it implies that the following sides are corresponding
![LM \to PQ](https://img.qammunity.org/2022/formulas/mathematics/high-school/8dmrvpasix2uwt963nm0cwnavouydp5lts.png)
![MN \to QR](https://img.qammunity.org/2022/formulas/mathematics/high-school/sjq7pt8j1k4l525w1t7xwq4w8i0ivdouny.png)
![LN \to PR](https://img.qammunity.org/2022/formulas/mathematics/high-school/e5036pyh39bs0v5qjsnn27u6k31tpb9z2y.png)
So, we have:
![PQ = k * LM](https://img.qammunity.org/2022/formulas/mathematics/high-school/hbif8anloms9lrr7x347f63ak4887pq0fa.png)
![PQ = 1.25* LM](https://img.qammunity.org/2022/formulas/mathematics/high-school/bibe77y6dwmy9x5wderi4oiumwrimldnal.png)
The question is incomplete.
Assume LM = 16, then:
![PQ = 1.25* 16](https://img.qammunity.org/2022/formulas/mathematics/high-school/wvh3tjv93gdx24q6tyicp5r6zzwn42z7rj.png)
![PQ = 20](https://img.qammunity.org/2022/formulas/mathematics/college/3tu6zrjyd9zxkfhea97um9hyem16rm7yll.png)