138k views
5 votes
Plss help me with this :(​

Plss help me with this :(​-example-1
User Pchajer
by
3.9k points

1 Answer

4 votes

Answer:

(k) cos(θ)·√(1 + cot²θ) = √(cosec²θ - 1)

From trigonometric identities, we have;

1 + cot²θ = cosec²θ

On the Left Hand Side of the equation, we get;

cos(θ)·√(1 + cot²θ) = cos(θ) × cosec(θ) = cot(θ)

On the Right Hand Side of the equation, we have;

√(cosec²(θ) - 1) = √(1 + cot²(θ) - 1) = √(cot²(θ)) = cot(θ)

∴ √(cosec²θ - 1) = cot(θ)

By transitive property of equality, therefore;

cos(θ)·√(1 + cot²θ) = √(cosec²θ - 1)

(l) sin⁶A + cos⁶A = 1 - 3·sin²A·cos²A

sin⁶A + cos⁶A = (sin²A)³ + (cos²A)³

(sin²A)³ + (cos²A)³ = ((sin²A) + (cos²A))³ - 3·((sin²A)·(cos²A))·((sin²A) + (cos²A))

∴ (sin²A)³ + (cos²A)³ = (1)³ - 3·((sin²A)·(cos²A))·(1) = 1 - 3·((sin²A)·(cos²A))

sin⁶A + cos⁶A = (sin²A)³ + (cos²A)³ = 1 - 3·((sin²A)·(cos²A))

sin⁶A + cos⁶A = 1 - 3·((sin²A)·(cos²A))

(m) (sinA - cosecA)² + (cosA - secA)² = cot²A + tan²A - 1

(sinA - cosecA)² = sin²A - 2×sinA×cosecA + cosec²A = sin²A - 2 + cosec²A

(cosA - secA)² = cos²A - 2×cosA×secA + sec²A = cos²A - 2 + sec²A

∴ (sinA - cosecA)² + (cosA - secA)² = sin²A - 2 + cosec²A + cos²A - 2 + sec²A

Where;

sin²A - 2 + cosec²A + cos²A - 2 + sec²A = sin²A + cos²A - 2 - 2 + cosec²A + sec²A

sin²A + cos²A - 2 - 2 + cosec²A + sec²A = 1 - 4 + cosec²A + sec²A

1 - 4 + cosec²A + sec²A = cosec²A + sec²A - 3

Where;

cosec²A = cot²A + 1

sec²A = tan²A + 1

∴ cosec²A + sec²A - 3 = cot²A + 1 + tan²A + 1 - 3 = cot²A + tan²A - 1 = The Right Hand Side of the equation

∴ (sinA - cosecA)² + (cosA - secA)² = cot²A + tan²A - 1

(n)
√(1 - 2\cdot siaA\cdot cosA) = sinA - cosA

Squaring the Right Hand Side of the equation, we get;

(sinA - cosA)² = sin²A -2·sinA·cosA + cos²A = sin²A + cos²A -2·sinA·cosA

sin²A + cos²A -2·sinA·cosA = 1 - 2·sinA·cosA

∴ (sinA - cosA)² = 1 - 2·sinA·cosA

Taking the square root of both sides gives;

√((sinA - cosA)²) =
√(1 - 2\cdot siaA\cdot cosA)

∴ sinA - cosA =
√(1 - 2\cdot siaA\cdot cosA)

By symmetric property of equality, we have;


√(1 - 2\cdot siaA\cdot cosA) = sinA - cosA

Explanation:

User Earlz
by
4.0k points