145k views
0 votes
Find f′ in terms of g′

f(x)=x2g(x)

Select one:

f′(x)=2xf′(x)+2xg′(x)


f′(x)=2xg′(x)


f′(x)=2x+g′(x)


f′(x)=x2g(x)+2x2g′(x)


f′(x)=2xg(x)+x2g′(x)

User Chad Moore
by
4.4k points

1 Answer

4 votes

f(x)g(x) if you find the derivative of two products, you get f(x)g’(x)+f’(x)g(x). Let’s say x^2 = f(x).

(x^2)(g’(x))+2x(g(x)) so it would be your last option, 2x(g(x))+x^2(g’(x))

User David Waterworth
by
4.4k points