175,117 views
5 votes
5 votes
Prove that!


\tiny\displaystyle\rm \sum_(q=1)^(\infty)\left(a^(q)\left(1+\sum_(r=1)^(\infty) (\prod \limits_(i=0)^(r+1)(q-i))/(\Gamma(r+1))\left((b x^(m))/(a)\right)^(r)\right)\right)=(a+b x^(m))/(1-\left(a+b x^(m)\right))

if all variables belong to natural number.

User Raphael Amoedo
by
2.4k points

1 Answer

7 votes
7 votes

Recall that if |x| < 1, then


\displaystyle \frac1{1-x} = \sum_(k=0)^\infty x^k

So if |a + bxᵐ| < 1, then


\displaystyle (a+bx^m)/(1 - (a+bx^m)) = \sum_(q=1)^\infty (a+bx^m)^q = \sum_(q=1)^\infty a^q \left(1 + \frac{bx^m}a\right)^q

By the binomial theorem,


\displaystyle \left(1 + \frac{bx^m}a\right)^q = \sum_(r=0)^q \binom qr \left(\frac{bx^m}a\right)^r

The binomial coefficient is defined as


\dbinom nk = (n!)/(k!(n-k)!)

if 0 ≤ k ≤ n, and 0 otherwise. Then we can rewrite the sum as


\displaystyle \left(1 + \frac{bx^m}a\right)^q = \sum_(r=0)^\infty \binom qr \left(\frac{bx^m}a\right)^r

and pulling out the first term,


\displaystyle \left(1 + \frac{bx^m}a\right)^q = 1 + \sum_(r=1)^\infty \binom qr \left(\frac{bx^m}a\right)^r

Finally,


\dbinom qr = (q!)/(r! (q-r)!) \\\\\\ = (q(q-1)(q-2)\cdots(q-(r-1))(q-r)(q-(r+1))\cdots3\cdot2\cdot1)/(r! (q-r) (q-(r+1)) (q-(r+2))\cdots3\cdot2\cdot1) \\\\\\ = (q(q-1)(q-2)\cdots(q-(r-1)))/(r!) \\\\ = (\prod\limits_(i=0)^(r-1)(q-i))/(\Gamma(r+1))

since n! = Γ(n + 1). (I think the given upper limit in the product may be a mistake.)

User Kevin
by
2.2k points