Answer:
(a)
![P](https://img.qammunity.org/2022/formulas/mathematics/college/2istvzq3yinea0pitnbvfajm0k4bb4myb7.png)
(b)
![(x,y) \to (4,-8)](https://img.qammunity.org/2022/formulas/mathematics/college/l6bp6v6bimasz23uylxueosa27mrhb91xn.png)
Explanation:
Given
![P = (4,3)](https://img.qammunity.org/2022/formulas/mathematics/college/f6k9b6rae9b8dulbc5m5l9utuvgx4vryev.png)
Solving (a): Reflect across x and y-axis.
Reflection across x-axis has the following rules
![(x,y) \to (x,-y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cokf5r7ad01buou2wg1wn9q8rjtywes02e.png)
So, we have:
![P' = (4,-3)](https://img.qammunity.org/2022/formulas/mathematics/college/30xgrc4bhr1sb0ncpyald68r8y2l2ozcez.png)
Reflection across y-axis has the following rules
![(x,y) \to (-x,y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8bqq6o7m4fn6b59xtnohgb8e09qc84q8ll.png)
So, we have:
![P](https://img.qammunity.org/2022/formulas/mathematics/college/2istvzq3yinea0pitnbvfajm0k4bb4myb7.png)
Hence, the new point is: (-4,-3)
Solving (b): Rx . Do,2 (2,4)
reflect across the x-axis
Reflection across x-axis has the following rules
![(x,y) \to (x,-y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cokf5r7ad01buou2wg1wn9q8rjtywes02e.png)
So, we have:
---- when P is reflected across the x-axis
dilate by a scale factor of 2
The rule is:
![(x,y) \to 2 * (x,y)](https://img.qammunity.org/2022/formulas/mathematics/college/7hjh9yuwqmd1vdtbw7gp92kab98d957tuy.png)
So, we have
![(x,y) \to 2 * (2,-4)](https://img.qammunity.org/2022/formulas/mathematics/college/evgvc5uuy3z85lb6ac0c1goairjghtg6sp.png)
Open bracket
![(x,y) \to (4,-8)](https://img.qammunity.org/2022/formulas/mathematics/college/l6bp6v6bimasz23uylxueosa27mrhb91xn.png)