Answer:
The numerical limits for a C grade are 60.6 and 69.1.
Explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Scores on the test are normally distributed with a mean of 67 and a standard deviation of 7.3.
This means that
Find the numerical limits for a C grade.
Below the 100 - 38 = 62th percentile and above the 18th percentile.
18th percentile:
X when Z has a p-value of 0.18, so X when Z = -0.915.
62th percentile:
X when Z has a p-value of 0.62, so X when Z = 0.305.
The numerical limits for a C grade are 60.6 and 69.1.