Answer:
The 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs is (-0.8276, 0.2276).
Explanation:
Before building the confidence interval, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Siberian Huskies:
Sample of 47, mean of 5.2 minutes, standard deviation of 1.4. So
Others:
Sample of 39, mean of 5.5 minutes, standard deviation of 1.1. So
Distribution of the difference:
Confidence interval:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:
Now, we have to find z in the Z-table as such z has a p-value of
.
That is z with a pvalue of
, so Z = 1.96.
Now, find the margin of error M as such
In which s is the standard error. So
The lower end of the interval is the sample mean subtracted by M. So it is -0.3 - 0.5276 = -0.8276.
The upper end of the interval is the sample mean added to M. So it is -0.3 + 0.5276 = 0.2276
The 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs is (-0.8276, 0.2276).