Answer:
0.2725
0.0431
Explanation:
The distribution here is a poisson distribution :
λ = 1.3
The poisson distribution :
p(x) = [(e^-λ * λ^x)] ÷ x!
Expected probability of finding male with 0 accident ; x = 0
p(0) = [(e^-1.3 * 1.3^0)] ÷ 0!
p(0) = [0.2725317 * 1] ÷ 1
p(0) = 0.2725317
= 0.2725
2.)
P(x ≥ 4) = 1 - P(x < 4)
P(x < 4) = p(x = 0) + p(x. = 1) + p(x = 2) + p(x = 3)
p(x = 0) = p(0) = [(e^-1.3 * 1.3^0)] ÷ 0! = 0.2725
p(x = 1) = p(1) = [(e^-1.3 * 1.3^1)] ÷ 1! = 0.35429
p(x = 2) = p(2) = [(e^-1.3 * 1.3^2)] ÷ 2! = 0.23029 p(x = 3) = p(3) = [(e^-1.3 * 1.3^3)] ÷ 0! = 0.09979
P(x < 4) = 0.2725 + 0.35429 + 0.23029 + 0.09979 = 0.95687
P(x ≥ 4) = 1 - 0.95687 = 0.0431