Step 1 : Equation at the end of step 1
(((7•(x^10 ))-5)•x)•(5x^10-8)
Step 2 : Equation at the end of step 2 :
((7x^10 - 5) • x) • (5x^10 - 8)
Step 3 :
Trying to factor as a Difference of Squares:
3.1 Factoring: 7x^10-5
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A² - AB + BA - B² =
A² - AB + AB - B² =
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 7 is not a square !!
Ruling : Binomial can not be factored as the
difference of two perfect squares.
Equation at the end of step 3 :
x • (7x10 - 5) • (5x10 - 8)
Step 4 :
4.1 Factoring: 5x^10-8
Check : 5 is not a square !!
Ruling : Binomial can not be factored as the
difference of two perfect squares.
Final result : ☞ x • (7x10 - 5) • (5x10 - 8)
→ 3.5 × 10^-12
____________________________
Hope It Helps You ✌️