Explanation:
6a. Both the x and y coordinates are negative so this means isn't must be in the Third Quadrant.
6b. The measure of this using the unt circle is
![\cos(x) - (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/um7z5s4nwyo8qctexetz1ndwhjmqz1g6ci.png)
![\sin(x) = - ( √(3) )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/87nsoult8pxndydt96kv9y63ni97dylc3f.png)
In the unit circle, this occurs about
an angle of 240 degrees. We can find coterminal angles within the interval of 2 pi to -2 pi. Just subtract 260 from theta.( which is 240)
![240 - 360 = - 120](https://img.qammunity.org/2022/formulas/mathematics/college/nn5muq4op76zja83q1fubnfpoxccxefer0.png)
So the angles in the interval is
240, -120.
6c. pi/2 is the same as 90 degrees so this means that
![(240 + 90) = 330](https://img.qammunity.org/2022/formulas/mathematics/college/1xs8anhqej0yooi7n7egxxwzjt963twdsk.png)
In the unit circle, we know that at 330 degrees,
![\cos(330) = ( √(3) )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/og8viin235q1edhe1alfbkb940shhsi4yd.png)
![\sin(330) = (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/v2z7na3cd66k6svne1cbbqpoe007716msi.png)
So the coordinates are
(sqr root of 3/2, 1/2).
6d. pi is the same as 180 degrees so this means that
![(240 - 180) = 60](https://img.qammunity.org/2022/formulas/mathematics/college/vxgb2co91qqfusw27ciswfq5d8eiyjw88a.png)
In the unit circle, we know that 60 degrees,
![\cos(60) = (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/l4yyhoklzqv1zwk215x8avkaanpz7vopez.png)
![\sin(60) = ( √(3) )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/txh5hqiexxc47key2ryyp48mi9jhxcfik4.png)
So the coordinates are
(1/2, sqr root of 3/2)