Answer:
(a-b)(b-c)(a-c)
Explanation:
a^2(b - c) + b^2(c-a) + c^2(a - b)
= a^2b - a^2c + b^2c - b^2a + c^2a-c^2b
=a^2b - b^2a - a^2c + b^2c + c^2a -c^2b
= ab(a - b) - c(a^2 - b^2) +c^2(a - b)
=ab(a - b) -c(a - b)(a + b) +c^2(a - b)
=(a - b)(ab - c(a + b) +c^2)
=(a - b)(ab - cb -ca + c^2)
= (a - b)(b(a-c) -c(a-c))
=(a-b)(b-c)(a-c)