Answer:

General Formulas and Concepts:
Pre-Algebra
Algebra I
- Terms/Coefficients
- Factoring
- Exponential Rule [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{(1)/(n)}](https://img.qammunity.org/2022/formulas/mathematics/college/yqpyvbuov0tgbjo8vla0qsqp67pafn2fr7.png)
Algebra II
- Natural logarithms ln and Euler's number e
- Logarithmic Property [Exponential]:

Calculus
Differentiation
- Derivatives
- Derivative Notation
- Implicit Differentiation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rwpyhrof52dro5d128gleq5obchnuu5qkj.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2022/formulas/mathematics/high-school/i90hl6t3gcguvrecodn8t9gnodav0w5ns8.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]:
![\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))](https://img.qammunity.org/2022/formulas/mathematics/high-school/hrfl3gpx3dh352g7a9uj6guyxz9uxwhvl3.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
*Note:
You can simply just use the Quotient and Chain Rule to find the derivative instead of using ln.
Step 1: Define
Identify

Step 2: Rewrite
- [Function] Exponential Rule [Root Rewrite]:

- [Equality Property] ln both sides:
![\displaystyle lny = ln \bigg[ \bigg( (x)/(2 - x) \bigg)^\bigg{(1)/(2)} \bigg]](https://img.qammunity.org/2022/formulas/mathematics/college/ncudo6p95f3ozw4f5p7f6ugkfdi2l6cz2o.png)
- Logarithmic Property [Exponential]:

Step 3: Differentiate
- Implicit Differentiation:
![\displaystyle (dy)/(dx)[lny] = (dy)/(dx) \bigg[ (1)/(2)ln \bigg( (x)/(2 - x) \bigg) \bigg]](https://img.qammunity.org/2022/formulas/mathematics/college/f1jmsx6foeduc5n6lfu4tzi9qr912v74cb.png)
- Logarithmic Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle (1)/(y) \ (dy)/(dx) = (1)/(2) \bigg( (1)/((x)/(2 - x)) \bigg) (dy)/(dx) \bigg[ (x)/(2 - x) \bigg]](https://img.qammunity.org/2022/formulas/mathematics/college/18ypfm4rjfovrla0hxah90e14lhkptv8ad.png)
- Chain Rule [Basic Power Rule]:
![\displaystyle (1)/(y) \ (dy)/(dx) = (1)/(2) \bigg( (1)/((x)/(2 - x)) \bigg) \bigg[ (2)/((x - 2)^2) \bigg]](https://img.qammunity.org/2022/formulas/mathematics/college/2fa24nhk5w1z4vbicy6tys5ukvdf74cbs5.png)
- Simplify:

- Isolate
:

- Substitute in y [Derivative]:

- Rationalize:

- Rewrite:

- Factor:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e