Answer:
y=2x+4
Explanation:
Hi there!
We want to find the equation of the line that passes through the points (-5, -6) and (4, 12)
The most common way to write the equation of the line is in slope-intercept form, which is y=mx+b, where m is the slope and b is the y intercept
First, let's find the slope of the line
The formula for the slope calculated from two points is
, where (
,
) and (
,
) are points
We have everything needed to calculate the slope, but let's label the values of the points to avoid any confusion
=-5
=-6
=4
=12
Now substitute into the formula (remember: the formula has SUBTRACTION in it)
m=

m=

Simplify
m=

Add
m=

Divide
m=2
So the slope of the line is 2
Here is the equation so far:
y=2x+b
We need to find b
As the line will pass through both (-5, -6) and (4, 12), we can use the values of either one to solve for b
Let's take (4, 12) for instance
Substitute 4 as x and 12 as y
12=2(4)+b
Multiply
12=8+b
Subtract 8 from both sides
4=b
Substitute 4 as b in the equation
y=2x+4
Hope this helps!