Answer:
First term: 6
Common difference: 15/4
Explanation:
General form of arithmetic progression:
![a_n=a+(n-1)d](https://img.qammunity.org/2023/formulas/mathematics/high-school/t99kk5roieipg56xa37yseewl9ybc4zh6i.png)
(where
is the initial term and
is the common difference between terms)
Question (a)
![\implies a_3=a+(3-1)d=a+2d](https://img.qammunity.org/2023/formulas/mathematics/high-school/ir88ac9z2jbsn3d32qheeekrtg9fbegt65.png)
![\implies a_9=a+(9-1)d=a+8d](https://img.qammunity.org/2023/formulas/mathematics/high-school/51d6r102y2c0h7hst23wpznqy8qco7mmna.png)
![\implies a_(25)=a+(25-1)d=a+24d](https://img.qammunity.org/2023/formulas/mathematics/high-school/p29d0aixicaida2k7s2qmrizww5yv9004e.png)
Question (b)
General form of a geometric progression:
![a_n=ar^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/ap7tka3z5szz7gan7yzwlm8df4q559etdo.png)
(where
is the initial term and
is the common ratio)
Therefore, the first three terms of a geometric series are:
![a_1=ar^0=a](https://img.qammunity.org/2023/formulas/mathematics/high-school/aa82f9e2l3cp2ozdbeqb8easw3g8hxj86s.png)
![a_2=ar^1=ar](https://img.qammunity.org/2023/formulas/mathematics/high-school/xuwx5t9c97ydsw5wj8im44bi6gag9bwdis.png)
![a_3=ar^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/gfz3qgsws48hhzobsckw46fzjthwkpdbcb.png)
To find the common ratio:
![r=(ar^2)/(ar)=(ar)/(a) \implies (a_3)/(a_2)=(a_2)/(a_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/j26pn3eh52mh8gx89l7991edzr70q2in2t.png)
If the 3rd 9th and 25th terms of an arithmetic progression form the first three consecutive terms of a geometric series, then inputting these into the above formula for r:
![\implies (a+24d)/(a+8d)=(a+8d)/(a+2d)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wrnit5jtvy3if8biz0vhbjh6qboqj14gxg.png)
![\implies (a+24d)(a+2d)=(a+8d)(a+8d)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1o0ohhduzlixlufx1xuotn6u5auf3tixbq.png)
![\implies a^2+26ad+48d^2=a^2+16ad+64d^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/9r54b0jw7iepsblju7yaamsqfkuoikfee4.png)
![\implies 10ad=16d^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/n5r35s1in2vnx6aivfz8982iuq62j3lbdc.png)
![\implies 10a=16d](https://img.qammunity.org/2023/formulas/mathematics/high-school/s1xqe3uqxjm8e4nu2vu45w6j7a7tv6n3gg.png)
The 6th and 7th terms of the arithmetic progression are:
![a_6=a+5d](https://img.qammunity.org/2023/formulas/mathematics/high-school/2feu3jlqlulegr7pusvvckqi9ajbyuondl.png)
![a_7=a+6d](https://img.qammunity.org/2023/formulas/mathematics/high-school/qzy63d6rhvjp4iax55n6f7vt2ispdjk6x6.png)
If the sum of the 7th and twice the 6th term of the arithmetic progression is 78, then:
![\implies a_7+2(a_6)=78](https://img.qammunity.org/2023/formulas/mathematics/high-school/r3xrwew27mgx29esujczld2ir3fv773jbq.png)
![\implies (a+6d)+2(a+5d)=78](https://img.qammunity.org/2023/formulas/mathematics/high-school/7jrsvcsvtbrk2l9u1yaif3joo5lv3uyhek.png)
![\implies 3a+16d=78](https://img.qammunity.org/2023/formulas/mathematics/high-school/ykmdu8rs3zyrs5dc4ibzwrukzkhaojhz72.png)
Substituting
into
and solving for a:
![\implies 3a+10a=78](https://img.qammunity.org/2023/formulas/mathematics/high-school/ujsvn4b8flxplobe07e6ffqyc10j5cpjoz.png)
![\implies 13a=78](https://img.qammunity.org/2023/formulas/mathematics/high-school/2ig2bajkjc818x5c929x37jrptb7sw6oxf.png)
![\implies a=6](https://img.qammunity.org/2023/formulas/mathematics/high-school/x5ts282orsno5ifqufy47kyzx6sxhbvham.png)
Substituting
into
and solving for d:
![\implies 3(6)+16d=78](https://img.qammunity.org/2023/formulas/mathematics/high-school/4pwn2dqcy6weicqaujt0wrwoq5wj2lsvyy.png)
![\implies 16d=60](https://img.qammunity.org/2023/formulas/mathematics/high-school/54s6tqiam2yqeh97n9j5lom4l6egs5qptj.png)
![\implies d=(15)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2n32ij5dyje5hw7nzfuqhmnga07760awfd.png)