70.2k views
5 votes
Find the arclength of the curve r(t) = ⟨ 10sqrt(2)t , e^(10t) , e^(−10t)⟩, 0≤t≤1

User Amit Gaud
by
4.2k points

1 Answer

2 votes

Answer:


\displaystyle AL = 2sinh(10)

General Formulas and Concepts:

Pre-Calculus

  • Hyperbolic Functions

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Exponential Differentiation

Integration

  • Integrals
  • Integration Constant C
  • Definite Integrals

Parametric Integration

Vector Value Functions

  • Vector Integration

Arc Length Formula [Vector]:
\displaystyle AL = \int\limits^b_a {√([i'(t)]^2 + [j'(t)]^2 + [k'(t)]^2)} \, dt

Explanation:

Step 1: Define

Identify


\displaystyle \vec{r}(t) = <10√(2)t , e^(10t) , e^(-10t) >

Interval [0, 1]

Step 2: Find Arclength

  1. Rewrite vector value function:
    \displaystyle r(t) = 10√(2)t \textbf i + e^(10t) \textbf j + e^(-10t) \textbf k
  2. Substitute in variables [Arc Length Formula - Vector]:
    \displaystyle AL = \int\limits^1_0 {\sqrt{\bigg[(d)/(dt)[10√(2)t \textbf i]\bigg]^2 + \bigg[(d)/(dt)[e^(10t) \textbf j]\bigg]^2 + \bigg[(d)/(dt)[e^(-10t) \textbf k ]\bigg]^2}} \, dt
  3. [Integrand] Differentiate [Respective Differentiation Rules]:
    \displaystyle AL = \int\limits^1_0 {\sqrt{[10√(2) \textbf i]^2 + [10e^(10t) \textbf j]^2 + [-10e^(-10t) \textbf k]^2}} \, dt
  4. [Integrand] Simplify:
    \displaystyle AL = \int\limits^1_0 {\sqrt{200 \textbf i + 100e^(20x) \textbf j + 100e^(-20x) \textbf k}} \, dt
  5. [Integral] Evaluate:
    \displaystyle AL = 2sinh(10)

Topic: AP Calculus BC (Calculus I + II)

Unit: Vector Value Functions

Book: College Calculus 10e

User Lcat
by
4.2k points