Answer:
The standard deviation of the sampling distribution of sample means would be of 0.7 pounds.
Explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Mean of 21.9 pounds and a standard deviation of 5.3 pounds.
This means that
If a sampling distribution is created using samples of the amounts of weight lost by 78 people on this diet, what would be the standard deviation of the sampling distribution of sample means?
This is s when n = 78, so:
The standard deviation of the sampling distribution of sample means would be of 0.7 pounds.