Answer:
Explanation:
Given the function :
y=x³ - 3x² - 9x + 2. The largest and smallest values of the function at interval [-2, 4]
We substitute x values in the interval (-2 to 4) into the equation and solve for y
At x = - 2
y = (-2)³ - 3(-2)² - 9(-2) + 2 = 0
At x = - 1
y = (-1)³ - 3(-1)² - 9(-1) + 2 = 7
At x = 0
y = (-0)³ - 3(-0)² - 9(-0) + 2 = 2
At x = 1
y = (1)³ - 3(1)² - 9(1) + 2 = - 9
At x = 2
y = (2)³ - 3(2)² - 9(2) + 2 = - 20
At x = 3
y = (3)³ - 3(3)² - 9(3) + 2 = - 25
At x = 4
y = (4)³ - 3(4)² - 9(4) + 2 = - 18
Function is greatest at