Answer:
Explanation:
Let take a look at the given function y = 4x - 1 whose point is located between (1,3) and (4,15) on the graph.
Here, the function of y is non-negative. Now, expressing y in terms of x in y = 4x- 1
4x = y + 1
![x = (y+1)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/6qce3n1yatu8ojgbafq9ibmzlgstvokkax.png)
![x = (1)/(4)y + (1)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/nw4y50xfb2i7kxk3ddw8u8rit7pa9boj6d.png)
By integration, the required surface area in the revolve is:
![S = \int^(15)_( 3) 2 \pi g (y) √(1+g'(y^2) \ dy )](https://img.qammunity.org/2022/formulas/mathematics/college/bzrm7oetqc558gidvbzqvn0w6m6bv5vw9v.png)
where;
g(y) =
![x = (1)/(4)y + (1)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/nw4y50xfb2i7kxk3ddw8u8rit7pa9boj6d.png)
∴
![S = \int^(15)_( 3) 2 \pi \Big( (1)/(4)y + (1)/(4)\Big) \sqrt{1+\Bigg(\Big( (1)/(4)y + (1)/(4)\Big)'\Bigg)^2 \ dy }](https://img.qammunity.org/2022/formulas/mathematics/college/wy1um38ngo3ni23ptptv5v33znngrc9pz9.png)
![S = (1)/(2) \pi \int^(15)_( 3) (y+1) \sqrt{1+\Bigg(\Big( (1)/(4)\Big ) \Bigg)^2 \ dy } \\ \\ \\ S = (1)/(2) \pi \int^(15)_( 3) (y+1) (√(17))/(4) \ dy](https://img.qammunity.org/2022/formulas/mathematics/college/xfqhi1j1sjye8vbi1vpw4bcft5a78xnc5u.png)
![S = (√(17))/(8) \pi \int^(15)_( 3) (y+1) \ dy](https://img.qammunity.org/2022/formulas/mathematics/college/utzbvn9cd006rtbifei4237ecjuk55wo6u.png)
![S = (√(17) \pi)/(8) ((1)/(2)(y+1)^2)\Big|^(15)_(3) \\ \\ S = (√(17) \pi)/(8) ((1)/(2)(15+1)^2-(1)/(2)(3+1)^2 ) \\ \\ S = (√(17) \pi)/(8) *120 \\ \\\mathbf{ S = 15 √(17)x}](https://img.qammunity.org/2022/formulas/mathematics/college/kg1ktsqs784823384c84shdhq8lg1fj2fx.png)