Answer:
(a): The conditional pmf of Y when X = 1
![p_(Y|X)(0|1) = 0.2353](https://img.qammunity.org/2022/formulas/mathematics/college/gnzycj6jejamkkt0fdn8jouyml2ijqtsy0.png)
![p_(Y|X)(1|1) = 0.5882](https://img.qammunity.org/2022/formulas/mathematics/college/o3b4wpnz6ouwrbtb1swyhcrg3k2pmvq381.png)
![p_(Y|X)(2|1) = 0.1765](https://img.qammunity.org/2022/formulas/mathematics/college/fl6kjpolqqwl0a2y6zcbz2nae70yqnql2p.png)
(b): The conditional pmf of Y when X = 2
![p_(Y|X)(0|2) = 0.0962](https://img.qammunity.org/2022/formulas/mathematics/college/qxbxyneju29flx1dshvta9vaqmf6c4qh4r.png)
![p_(Y|X)(1|2) = 0.2692](https://img.qammunity.org/2022/formulas/mathematics/college/7sh9okefodiij1towaywfx48saz7f899jn.png)
![p_(Y|X)(2|2) = 0.6346](https://img.qammunity.org/2022/formulas/mathematics/college/5j9yf53fdtz72xm2ysvxlq0ci10lvrlv8s.png)
(c): From (b) calculate P(Y<=1 | X =2)
![P(Y\le1 | X =2) = 0.3654](https://img.qammunity.org/2022/formulas/mathematics/college/hl1bfdsivfpimq1brulxv8p9plcwowb5mb.png)
(d): The conditional pmf of X when Y = 2
![p_(X|Y)(0|2) = 0.025](https://img.qammunity.org/2022/formulas/mathematics/college/xtzd3me3z66spn6mijselg4d7tceve4mqu.png)
![p_(X|Y)(1|2) = 0.150](https://img.qammunity.org/2022/formulas/mathematics/college/yxdt1qut36ikv1l7osp897bs6wi6e2cgnz.png)
![p_(X|Y)(2|2) = 0.825](https://img.qammunity.org/2022/formulas/mathematics/college/1fwmwj1i5hyczb0i6mzsf6mo7c0kqdbtuh.png)
Explanation:
Given
The above table
Solving (a): The conditional pmf of Y when X = 1
This implies that we calculate
![p_(Y|X)(0|1), p_(Y|X)(1|1), p_(Y|X)(2|1)](https://img.qammunity.org/2022/formulas/mathematics/college/gpj7hgq7g4e97raj2ibxg1daupuui3c773.png)
So, we have:
![p_(Y|X)(0|1) = (p(y = 0\ n\ x = 1))/(p(x = 1))](https://img.qammunity.org/2022/formulas/mathematics/college/jjtco32aele4713p074xp4qjdj3mlyhu4b.png)
Reading the data from the given table, the equation becomes
![p_(Y|X)(0|1) = (0.08)/(0.08+0.20+0.06)](https://img.qammunity.org/2022/formulas/mathematics/college/3fecukfl3dicstuupbzg6p1n2tcdubr94p.png)
![p_(Y|X)(0|1) = (0.08)/(0.34)](https://img.qammunity.org/2022/formulas/mathematics/college/huj4uupsk1yd4uaw5vpgaqs91bssgyg4p5.png)
![p_(Y|X)(0|1) = 0.2353](https://img.qammunity.org/2022/formulas/mathematics/college/gnzycj6jejamkkt0fdn8jouyml2ijqtsy0.png)
Using the format of the above formula for the rest, we have:
![p_(Y|X)(1|1) = (0.20)/(0.34)](https://img.qammunity.org/2022/formulas/mathematics/college/muydf6lcia1jb7lhdharr1bct1gr5sbw84.png)
![p_(Y|X)(1|1) = 0.5882](https://img.qammunity.org/2022/formulas/mathematics/college/o3b4wpnz6ouwrbtb1swyhcrg3k2pmvq381.png)
![p_(Y|X)(2|1) = (0.06)/(0.34)](https://img.qammunity.org/2022/formulas/mathematics/college/5a5egxb4eq55uloltncmms81bxoz69pa7p.png)
![p_(Y|X)(2|1) = 0.1765](https://img.qammunity.org/2022/formulas/mathematics/college/fl6kjpolqqwl0a2y6zcbz2nae70yqnql2p.png)
Solving (b): The conditional pmf of Y when X = 2
This implies that we calculate
![p_(Y|X)(0|2), p_(Y|X)(1|2), p_(Y|X)(2|2)](https://img.qammunity.org/2022/formulas/mathematics/college/zeg3tk7z360ec6axjo3kbbdyqp3ydmvjvj.png)
So, we have:
![p_(Y|X)(0|2) = (p(y = 0\ n\ x = 2))/(p(x = 2))](https://img.qammunity.org/2022/formulas/mathematics/college/4ae81vvses1p3q7xzlrvyzmkqjs5o2kn26.png)
Reading the data from the given table, the equation becomes
![p_(Y|X)(0|2) = (0.05)/(0.05+0.14+0.33)](https://img.qammunity.org/2022/formulas/mathematics/college/7vy1qhm1rnwvkgmi01m14nhqob89j03ugd.png)
![p_(Y|X)(0|2) = (0.05)/(0.52)](https://img.qammunity.org/2022/formulas/mathematics/college/bv8wooqmcd6fgmum73g3ezqpagrttcg6xf.png)
![p_(Y|X)(0|2) = 0.0962](https://img.qammunity.org/2022/formulas/mathematics/college/qxbxyneju29flx1dshvta9vaqmf6c4qh4r.png)
Using the format of the above formula for the rest, we have:
![p_(Y|X)(1|2) = (0.14)/(0.52)](https://img.qammunity.org/2022/formulas/mathematics/college/l38dtvuhjyzcs16tl7h6xjhbuvq6rn9x0l.png)
![p_(Y|X)(1|2) = 0.2692](https://img.qammunity.org/2022/formulas/mathematics/college/7sh9okefodiij1towaywfx48saz7f899jn.png)
![p_(Y|X)(2|2) = (0.33)/(0.52)](https://img.qammunity.org/2022/formulas/mathematics/college/txuwgqy8p6m3khmgybusf9eudcowxjdai7.png)
![p_(Y|X)(2|2) = 0.6346](https://img.qammunity.org/2022/formulas/mathematics/college/5j9yf53fdtz72xm2ysvxlq0ci10lvrlv8s.png)
Solving (c): From (b) calculate P(Y<=1 | X =2)
To do this, where Y = 0 or 1
So, we have:
![P(Y\le1 | X =2) = P_(Y|X)(0|2) + P_(Y|X)(1|2)](https://img.qammunity.org/2022/formulas/mathematics/college/neun23wbtg313407455gzfpf7dm7wk2fyo.png)
![P(Y\le1 | X =2) = 0.0962 + 0.2692](https://img.qammunity.org/2022/formulas/mathematics/college/tj336fmuhwhkhyqj98ry45apxc4x7kxk1c.png)
![P(Y\le1 | X =2) = 0.3654](https://img.qammunity.org/2022/formulas/mathematics/college/hl1bfdsivfpimq1brulxv8p9plcwowb5mb.png)
Solving (d): The conditional pmf of X when Y = 2
This implies that we calculate
![p_(X|Y)(0|2), p_(X|Y)(1|2), p_(X|Y)(2|2)](https://img.qammunity.org/2022/formulas/mathematics/college/rdu1wn4f85dhb757i07rgi0ixr8828n5l6.png)
So, we have:
![p_(X|Y)(0|2) = (p(x = 0\ n\ y = 2))/(p(y = 2))](https://img.qammunity.org/2022/formulas/mathematics/college/ixkcdwyi7pkq5veizhf2vfo0kzutl1ut9q.png)
Reading the data from the given table, the equation becomes
![p_(X|Y)(0|2) = (0.01)/(0.01+0.06+0.33)](https://img.qammunity.org/2022/formulas/mathematics/college/m71xro30eehl2w8vhav2q9qhqfgqhz0tk3.png)
![p_(X|Y)(0|2) = (0.01)/(0.40)](https://img.qammunity.org/2022/formulas/mathematics/college/4r0iw4t4abnzzr4i5bob6rj2tqbn7ye7rq.png)
![p_(X|Y)(0|2) = 0.025](https://img.qammunity.org/2022/formulas/mathematics/college/xtzd3me3z66spn6mijselg4d7tceve4mqu.png)
Using the format of the above formula for the rest, we have:
![p_(X|Y)(1|2) = (0.06)/(0.40)](https://img.qammunity.org/2022/formulas/mathematics/college/fg9uoempcz36rkb2c0vylifycw8m5pnbkz.png)
![p_(X|Y)(1|2) = 0.150](https://img.qammunity.org/2022/formulas/mathematics/college/yxdt1qut36ikv1l7osp897bs6wi6e2cgnz.png)
![p_(X|Y)(2|2) = (0.33)/(0.40)](https://img.qammunity.org/2022/formulas/mathematics/college/pa0by02bs1sdyrcvgvm5l10o510qyw9vrg.png)
![p_(X|Y)(2|2) = 0.825](https://img.qammunity.org/2022/formulas/mathematics/college/1fwmwj1i5hyczb0i6mzsf6mo7c0kqdbtuh.png)