The equivalent expression is
, leading to option D as the correct choice.
To simplify the expression
, we can use the rules of exponents and fraction simplification.
1. Combine the Numerators and Denominators:
![\[ -(9x^(-1)y^(-9))/(-15x^(5)y^(-3)) = (9x^(-1)y^(-9))/(15x^(5)y^(-3)) \]](https://img.qammunity.org/2022/formulas/mathematics/college/1voied7ohetzdcvtyas9nacjxu5h5ojwsh.png)
2. Combine Like Terms:
![\[ = -(3)/(5) \cdot (x^(-1-5))/(y^(9-(-3))) = -(3)/(5) \cdot (1)/(x^6y^(12)) \]](https://img.qammunity.org/2022/formulas/mathematics/college/oxb07ele8smyd36aj3i9siwl8duhjr8vy8.png)
3. Simplify the Fraction:
![\[ = -(3)/(5x^6y^(12)) \]](https://img.qammunity.org/2022/formulas/mathematics/college/63dvdlcge0oeuaday2tmlud7mn9jdckp2r.png)
Therefore, the expression is equivalent to
, which corresponds to option D.