Answer:
See Below.
Explanation:
We want to prove that:
![\displaystyle \sin\theta\sec\theta+\cos\theta\csc\theta = 2\csc2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/vojcrbo52bjmzqzl6f1hzkx8vxyb2kkqwr.png)
Let secθ = 1 / cosθ and cscθ = 1 / sinθ:
![\displaystyle (\sin\theta)/(\cos\theta)+(\cos\theta)/(\sin\theta)=2\csc2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/ev598m3n0d96ifor4gl9scqz718rz7j58q.png)
Creat a common denominator. Multiply the first fraction by sinθ and the second by cosθ. Hence:
![\displaystyle (\sin^2\theta)/(\sin\theta\cos\theta)+(\cos^2\theta)/(\sin\theta\cos\theta)=2\csc2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/vbyis1mf0bvei9hgujk49qqgzfwaydbg97.png)
Combine fractions:
![\displaystyle (\sin^2\theta + \cos^2\theta)/(\sin\theta\cos\theta)=2\csc2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/bkn4k9eneb5zj434hnq0bunod2gsj77uyx.png)
Simplify. Recall that sin²θ + cos²θ = 1:
![\displaystyle (1)/(\sin\theta\cos\theta)=2\csc2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/lsz7bhas5y4ihw5kcskfvl6afdammut2b8.png)
Multiply the fraction by two:
![\displaystyle (2)/(2\sin\theta\cos\theta)=2\csc2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/tv56ec9rig8h0qru9jo8tmgue3f51p4o1w.png)
Recall that sin2θ = 2sinθcosθ. Hence:
![\displaystyle (2)/(\sin2\theta)=2\csc2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/awh0dnp0aqybd2zkgjpk9lbd043ztqjyox.png)
By definition:
![\displaystyle 2\csc2\theta = 2\csc2\theta](https://img.qammunity.org/2022/formulas/mathematics/high-school/xoko4ul3ju6aj11iucnqx1rnmd44ctjg2j.png)
Hence proven.