Answer:
![$(d)/(\lambda) = 1.54$](https://img.qammunity.org/2022/formulas/physics/college/z9uhmhxnd3sxt91juxbzabpudg8htn8hvk.png)
Step-by-step explanation:
Given :
The first dark fringe is for m = 0
![$\theta_1 = \pm 19^\circ$](https://img.qammunity.org/2022/formulas/physics/college/xgrrc34h8z69x0hjijonanq75ya96896gy.png)
Now we know for a double slit experiments , the position of the dark fringes is give by :
![$d \sin \theta=\left(m+(1)/(2)\right) \lambda$](https://img.qammunity.org/2022/formulas/physics/college/yqxg0gn7205w2mhw9d0cm1m7vzzkfy0lnm.png)
The ratio of distance between the two slits, d to the light's wavelength that illuminates the slits, λ :
(since, m = 0)
![$d \sin \theta=(\lambda)/(2)$](https://img.qammunity.org/2022/formulas/physics/college/ftt0gic86nlaf9rdc8eix6g8f4dyaig3sr.png)
![$(d)/(\lambda) = (1)/(2 \sin \theta)$](https://img.qammunity.org/2022/formulas/physics/college/3e3tjkn6br5dvehv1165u1m0jriiegccc8.png)
![$(d)/(\lambda) = (1)/(2 \sin 19^\circ)$](https://img.qammunity.org/2022/formulas/physics/college/dce410vz3tkrsau42hniiaqxnequw2neu7.png)
![$(d)/(\lambda) = 1.54$](https://img.qammunity.org/2022/formulas/physics/college/z9uhmhxnd3sxt91juxbzabpudg8htn8hvk.png)
Therefore, the ratio is
or 1 : 1.54