Answer:
![\displaystyle \bigg( (F)/(G) \bigg)(-7) = (34)/(11)](https://img.qammunity.org/2022/formulas/mathematics/college/bohe7lyxt7w5cgeiw52kuq7cwkwexmjsrz.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Functions
- Function Notation
Explanation:
Step 1: Define
Identify
F(x) = x² - 15
G(x) = 4 - x
Step 2: Find
- Substitute in functions:
![\displaystyle \bigg( (F)/(G) \bigg)(x) = (x^2 - 15)/(4 - x)](https://img.qammunity.org/2022/formulas/mathematics/college/f78wqg645yqjaiavks4hinchinzfik3d3y.png)
Step 3: Evaluate
- Substitute in x [Function (F/G)(x)]:
![\displaystyle \bigg( (F)/(G) \bigg)(-7) = ((-7)^2 - 15)/(4 - (-7))](https://img.qammunity.org/2022/formulas/mathematics/college/tmbyxdgnaud55wus99jag9jtyiz4zppauu.png)
- Exponents:
![\displaystyle \bigg( (F)/(G) \bigg)(-7) = (49 - 15)/(4 - (-7))](https://img.qammunity.org/2022/formulas/mathematics/college/v4ia49403hwr0x5m3m5g2it2my5odwn7dh.png)
- Subtract:
![\displaystyle \bigg( (F)/(G) \bigg)(-7) = (34)/(11)](https://img.qammunity.org/2022/formulas/mathematics/college/bohe7lyxt7w5cgeiw52kuq7cwkwexmjsrz.png)