Answer:
![\displaystyle( {x}_(1) , y_(1)) =( - 3,4)\\ (x _(2), y_(2)) = (4, - 3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/o0x0t2yczux6165lykk3roz7h1k44n4zi4.png)
Explanation:
we are given two conditions
- two integers whos product is -12
- two integers whos sum is 1
let the two integers be x and y respectively according to the first condition
![\displaystyle xy = - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/q082fuqfubs2en20kb8pikt21e9d29wjcj.png)
according to the second condition:
![\displaystyle x + y = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/xf76lbth6ti29b7hrzqds77m2jmo5ypef9.png)
now notice that we have two variables therefore ended up with a simultaneous equation so to solve the simultaneous equation cancel x from both sides of the second equation which yields:
![\displaystyle y = 1 - x](https://img.qammunity.org/2022/formulas/mathematics/high-school/je7txbgs3aunvm0zuatvew4n663ce2fv0d.png)
now substitute the got value of y to the first equation which yields:
![\displaystyle x(1 - x) = - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/860y35i1xprkzgipko5szyqkc4kj7y0hrk.png)
distribute:
![\displaystyle x- {x}^(2) = - 12](https://img.qammunity.org/2022/formulas/mathematics/high-school/4u0n4y6gj5memkt4t88fa209xuedxsxeqw.png)
add 12 in both sides:
![\displaystyle x- {x}^(2) + 12 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/b3z2ydfxd4ejnn5havmtv8rt9aw15wjdfq.png)
rearrange it to standard form:
![\displaystyle - {x}^(2) + x + 12 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/2cgfbju4hv0yobnvb8w1y8b58hxfxwrv51.png)
divide both sides by -1:
![\displaystyle {x}^(2) - x - 12 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/h7le78qh5j8uoosrq8ynpj5760ijgerell.png)
factor:
![\displaystyle ({x} + 3)(x - 4) = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/8uwhexv1liodb5kssovjcpsstrj2dzz9u4.png)
by Zero product property we acquire:
![\displaystyle {x} + 3 = 0\\ x - 4= 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ya3fczp9zuz47a4pubtd1dmc298cl6i0u7.png)
solve the equations for x therefore,
![\displaystyle {x}_(1) = - 3\\ x _(2) = 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/lrk3iaunom5t121cv39dmjxaca4y2cf39g.png)
when x is -3 then y is
![\displaystyle y _(1)= 1 - ( - 3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/uv4bf76qmwcwae5b38py66pnsno043iml4.png)
simplify
![\displaystyle y _(1)= 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/kewlznoofcxhjcb0slkl1iqxbsmlazid7z.png)
when x is 4 y is
![\displaystyle y _(2)= 1 - ( 4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/drjrvq6eswfxzzvu28t2pufl0btyef7vxe.png)
simplify:
![\displaystyle y _(2)= - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/3jm83v37dlas3hb9hi4229q6lldwybjvnm.png)
hence,
![\displaystyle( {x}_(1) , y_(1)) =( - 3,4)\\ (x _(2), y_(2)) = (4, - 3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/o0x0t2yczux6165lykk3roz7h1k44n4zi4.png)