Answer:
(a)
![Q_1 = 14](https://img.qammunity.org/2022/formulas/mathematics/college/i7g0smn1y4eq7rh9dk246e7wn28drhwa11.png)
![Median = 15](https://img.qammunity.org/2022/formulas/mathematics/college/9t9b4qdg114741qhlsrvmn6n4k605hyxzg.png)
![Q_3 = 20](https://img.qammunity.org/2022/formulas/mathematics/college/wyt232cjq6k31kz030qcuiau7xm6qewofr.png)
(b)
![IQR = 6](https://img.qammunity.org/2022/formulas/mathematics/college/vpmqlin6aoajl33jjgmqixp5fwxjalj0wy.png)
Explanation:
Given
![14\ 14\ 15\ 26\ 13\ 16\ 21\ 20\ 15\ 13](https://img.qammunity.org/2022/formulas/mathematics/college/x9wstna6glb8vjenxlg2ztgmpnno4blv87.png)
![n = 10](https://img.qammunity.org/2022/formulas/mathematics/high-school/5637cnn9xyxo0qi78kwa566dvx4a2zc86q.png)
Solving (a): Median and the quartiles
Start by sorting the data
![Sorted: 13\ 13\ 14\ 14\ 15\ 15\ 16\ 20\ 21\ 26](https://img.qammunity.org/2022/formulas/mathematics/college/izffdp7id0btn5r2og2mubhgbins8b6sqp.png)
The median position is:
![Median = (n + 1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jdb0k1tbid7rpd4fdemn0m88y13to7g96j.png)
![Median = (10 + 1)/(2) = (11)/(2) = 5.5th](https://img.qammunity.org/2022/formulas/mathematics/college/l6vxlox115g6yf8gb9iui969x2mafi8i1k.png)
This implies that the median is the average of the 5th and the 6th data;
So;
![Median = (15+15)/(2) = (30)/(2) = 15](https://img.qammunity.org/2022/formulas/mathematics/college/vybedakuhw8qknfo6paendu4jzofbf8g3k.png)
Split the dataset into two halves to get the quartiles
![Lower: 13\ 13\ 14\ 14\ 15\](https://img.qammunity.org/2022/formulas/mathematics/college/udypav22si3kki720lmox85ykw0rwpxfd5.png)
![Upper: 15\ 16\ 20\ 21\ 26](https://img.qammunity.org/2022/formulas/mathematics/college/9ltkz22sbslh31836uqa4xpbw0lemqq4bl.png)
The quartiles are the middle items of each half.
So:
![Lower: 13\ 13\ 14\ 14\ 15\](https://img.qammunity.org/2022/formulas/mathematics/college/udypav22si3kki720lmox85ykw0rwpxfd5.png)
---- 14 is the middle item
![Upper: 15\ 16\ 20\ 21\ 26](https://img.qammunity.org/2022/formulas/mathematics/college/9ltkz22sbslh31836uqa4xpbw0lemqq4bl.png)
---- 20 is the middle item
Solving (b): The interquartile range (IQR)
This is calculated as:
![IQR = Q_3 - Q_1](https://img.qammunity.org/2022/formulas/mathematics/high-school/ed2urf9nlenazx19c00j0sknnlx06ldtib.png)
![IQR = 20 - 14](https://img.qammunity.org/2022/formulas/mathematics/college/in05aohunw5fbtlio8b9n9jhpflh1a4jik.png)
![IQR = 6](https://img.qammunity.org/2022/formulas/mathematics/college/vpmqlin6aoajl33jjgmqixp5fwxjalj0wy.png)
Solving (c): Incomplete details