153k views
3 votes
In any triangle ABC,Prove by vector method c^2=a^2+b^2-2abcosC​

1 Answer

5 votes

Answer:

Let be
\vec A,
\vec B and
\vec C the vector of a triangle so that
\vec C = \vec A + \vec B. By definition of Dot Product:


\vec C \,\bullet\,\vec C = (\vec A + \vec B) \,\bullet \vec C


\vec C \,\bullet \,\vec C = (\vec A\,\bullet \,\vec C) + (\vec B \,\bullet \,\vec C)


\|\vec C\|^(2) = [\vec A \,\bullet \,(\vec A + \vec B)] + [\vec B\,\bullet \,(\vec A + \vec B)]


\|\vec C\|^(2) = \vec A \,\bullet \, \vec A + \vec B\,\bullet \vec B + 2\cdot (\vec A \,\bullet \, \vec B)


\|\vec C\|^(2) = \|\vec A\|^(2) + \|\vec B\|^(2) + 2\cdot \|\vec A\|\cdot \|\vec B\|\cdot \cos\theta_(C)

Explanation:

Let be
\vec A,
\vec B and
\vec C the vector of a triangle so that
\vec C = \vec A + \vec B. By definition of Dot Product:


\vec C \,\bullet\,\vec C = (\vec A + \vec B) \,\bullet \vec C


\vec C \,\bullet \,\vec C = (\vec A\,\bullet \,\vec C) + (\vec B \,\bullet \,\vec C)


\|\vec C\|^(2) = [\vec A \,\bullet \,(\vec A + \vec B)] + [\vec B\,\bullet \,(\vec A + \vec B)]


\|\vec C\|^(2) = \vec A \,\bullet \, \vec A + \vec B\,\bullet \vec B + 2\cdot (\vec A \,\bullet \, \vec B)


\|\vec C\|^(2) = \|\vec A\|^(2) + \|\vec B\|^(2) + 2\cdot \|\vec A\|\cdot \|\vec B\|\cdot \cos\theta_(C)

User Kwiknik
by
3.6k points