Answer:
Explanation:
From the picture attached,
m∠COB = 90° - m∠BOS
= 90° - 40°
= 50°
tan(30°) =
![(AC)/(OC)](https://img.qammunity.org/2022/formulas/mathematics/college/mcid68zvfc1lz38r6fsc6mxnpyzqlhdpzs.png)
![(1)/(√(3))=(AC)/(OC)](https://img.qammunity.org/2022/formulas/mathematics/college/x5fttfxs1h86y3b922gwp4vvgj3lgf5y2e.png)
AC =
------(1)
Similarly, tan(50°) =
![(BC)/(OC)](https://img.qammunity.org/2022/formulas/mathematics/college/ihd6xrlo15qsq8owtbgiw22vdcf9th31xc.png)
BC = OC[tan(50°)] -------(2)
Now AC + BC = 30 cm
By substituting the values of AC and BC from equation (1) and (2),
![(OC)/(√(3))+OC(\text{tan}50)=30](https://img.qammunity.org/2022/formulas/mathematics/college/uouv6uponjy8z582bd5ukzmdm01oxt4tlh.png)
(1.769)OC = 30
OC = 16.96
1). cos(30°) =
![(OC)/(AO)](https://img.qammunity.org/2022/formulas/mathematics/college/oj5xa20oc115wwv84eev8boyv24mtrb9c7.png)
![(√(3))/(2)= (16.96)/(OA)](https://img.qammunity.org/2022/formulas/mathematics/college/3l0lncyqjnw3czwtfrmlwfc5ehw67nj2o5.png)
cm
Therefore, distance between the ship and town A is 19.58 cm.
2). cos(50°) =
![(OC)/(OB)](https://img.qammunity.org/2022/formulas/mathematics/college/c4cvh88grtzs5yje4c3y1wifzrxlbm999p.png)
0.6428 =
![(16.96)/(OB)](https://img.qammunity.org/2022/formulas/mathematics/college/i3lqqe4j6o09lk3bhc8mrn7kc1fr2c1wqr.png)
OB = 26.38 cm
Therefore, distance between the ship and town B is 26.38 cm.