Answer:
1)¼
2)½
3)1
4)2
5)4
Explanation:
Question-1&2:
recall that,
![\displaystyle {x}^( - n) = \frac{1}{ {x}^(n) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/af53apo0mmc48xg6fve0xzh7ucejchpt3t.png)
we want to evaluate
for x=-2
to do so substitute the given value of x
![\displaystyle {2}^( - 2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/60do50rlffauixy1og8kpwulh5qcbdzp75.png)
apply the formula:
![\displaystyle {2}^( - 2) = \frac{1}{ {2}^(2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/8b1evcvoih7swf1x08p9sv7ndi709r1v1p.png)
simplify square:
![\displaystyle {2}^( - 2) = \boxed{(1)/( 4) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/fu2quniv96806r6ikbs2tsp6vjpi0pn0wq.png)
likewise substitute the given value of x to x^-1:
![\displaystyle {2}^( - 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3c08kwrsp1pfupah2j6dpqmta34snjcw2t.png)
apply the formula:
![\displaystyle {2}^( 1) = \frac{1}{ {2}^(1) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/3nx6omxrv8ra6lxowmeiismy74veyv7rdm.png)
![\displaystyle {2}^( 1) = \boxed{\frac{1}{ {2}^{} } }](https://img.qammunity.org/2022/formulas/mathematics/high-school/tzpr54dbs1t83vy6ohge30ujp1bpxub8dk.png)
Question-3:
substitute the value of x
![\displaystyle {2}^( 0)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ee03lt0w9hak8xfe7ool1vwr07zr2upr7w.png)
it's a universal truth that x⁰=1 Thus
![\displaystyle \boxed{1}](https://img.qammunity.org/2022/formulas/mathematics/high-school/xcgox8oak5ndhu9s843tqb2p86wcua0qj1.png)
Question-4&5:
Substitute the given value of x to x¹ and x² respectively
![\displaystyle {2}^( 1) \quad \bigg | \quad {2}^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fu2is452f0n3133d5wyl5bmq0yujpk4pl1.png)
simplify:
![\displaystyle \boxed{2} \quad \bigg | \quad \boxed4](https://img.qammunity.org/2022/formulas/mathematics/high-school/amiydrnsm7qxfkrlotgoj9kanqd6elmutl.png)
and we're done!