Answer:
The farmer should plant 14 additional trees, for maximum yield.
Explanation:
Given
![Trees = 24](https://img.qammunity.org/2022/formulas/mathematics/college/1z4br8bff6slzg762f9c9vpa9y8u6oyt9f.png)
![Yield = 104](https://img.qammunity.org/2022/formulas/mathematics/college/57scfvs2qa1pc0v44l225tbldiwyrkrc4t.png)
![x \to additional\ trees](https://img.qammunity.org/2022/formulas/mathematics/college/30kohcxp58ia9f8sd563f0otqa7n2q7bl6.png)
So, we have:
![Trees = 24 + x](https://img.qammunity.org/2022/formulas/mathematics/college/cvrdlskt7r9hn7ny4ha0xn4t6t9dshnwav.png)
![Yield = 104 - 2x](https://img.qammunity.org/2022/formulas/mathematics/college/7vkqiga8nalnqu6yt7jygq1raxgt6uskmu.png)
Required
The additional trees to be planted for maximum yield
The function is:
![f(x) = Trees * Yield](https://img.qammunity.org/2022/formulas/mathematics/college/dv74713lfu4sfv9ykzaal7ytukl25b7n4t.png)
![f(x) = (24 + x) * (104 - 2x)](https://img.qammunity.org/2022/formulas/mathematics/college/sthlv3l1l0x21vr74uzpodqlu1iw6ylbor.png)
Open bracket
![f(x) = 24 * 104 + 104x - 24 * 2x - x * 2x](https://img.qammunity.org/2022/formulas/mathematics/college/db55r9qfirwhf5dvquqn5jdw1k9t9c25ag.png)
![f(x) = 2796 + 104x - 48x - 2x^2](https://img.qammunity.org/2022/formulas/mathematics/college/q2o6gwyqwskpntt85n4q6fl2ai34795aex.png)
![f(x) = 2796 + 56x - 2x^2](https://img.qammunity.org/2022/formulas/mathematics/college/908yx6byuwibh8m4t7ow4hgpuyeg51fqjn.png)
Rewrite as:
![f(x) = - 2x^2 + 56x + 2796](https://img.qammunity.org/2022/formulas/mathematics/college/1gymnmhzg2icsmqmy7ag8gwj19yr39q6es.png)
Differentiate
![f'(x) = -4x + 56](https://img.qammunity.org/2022/formulas/mathematics/college/haqofd4pzxxmbggqt3727kc6pp0z60cywn.png)
Equate
to 0 and solve for x to get the maximum of x
![-4x + 56 = 0](https://img.qammunity.org/2022/formulas/mathematics/college/3vtakx7z0lwatozmmbmtyautq3nm1vi5tw.png)
![-4x =- 56](https://img.qammunity.org/2022/formulas/mathematics/college/33uurbb0f524hxxla1ixy89bm1v4ydw1jk.png)
Divide by -4
![x =14](https://img.qammunity.org/2022/formulas/mathematics/college/vc76j4et1vnmuk703p1ipdgzsp6ggoqxqk.png)
The farmer should plant 14 additional trees, for maximum yield.