Answer:
The coefficient of variation after the tax is imposed is 0.033
Explanation:
Given
--- mean
--- variance
![tax = 10\%](https://img.qammunity.org/2022/formulas/mathematics/college/dlw4jzhdyy8szou8n21d2h00dx4iu2ko4p.png)
Required
The coefficient of variation
The coefficient of variation is calculated using:
![CV = (√(\sigma^2))/(\mu)](https://img.qammunity.org/2022/formulas/mathematics/college/2zof5tycfdgutuhz98d77k4ypprs1365s7.png)
After the tax, the new mean is:
![\mu_(new) = \mu * (1 + tax)](https://img.qammunity.org/2022/formulas/mathematics/college/m6zq246r4v1zqngxdbibo3zjztbdtsgadi.png)
![\mu_(new) = 1000 * (1 + 10\%)](https://img.qammunity.org/2022/formulas/mathematics/college/jy7niwqk09jwus83tvnghd0j7ihyjppz3u.png)
![\mu_(new) = 1100](https://img.qammunity.org/2022/formulas/mathematics/college/xd45mcm94zkuvoe4850vsyjdlecmb7d0ki.png)
And the new variance is:
![\sigma^2_(new) = \sigma^2 * (1 + tax)](https://img.qammunity.org/2022/formulas/mathematics/college/vwaaeplkpv6m9bz1vxyogwq68wms4jr6f3.png)
![\sigma^2_(new) = 1200 * (1 + 10\%)](https://img.qammunity.org/2022/formulas/mathematics/college/k6zcfn0eqf3fbx9rl2b3ipdayrjmvbmpq0.png)
![\sigma^2_(new) = 1320](https://img.qammunity.org/2022/formulas/mathematics/college/3syn9r1uau3lsssxkslx37g3pvrxw49mlu.png)
So, we have:
![CV = (√(\sigma^2))/(\mu)](https://img.qammunity.org/2022/formulas/mathematics/college/2zof5tycfdgutuhz98d77k4ypprs1365s7.png)
![CV = (√(1320))/(1100)](https://img.qammunity.org/2022/formulas/mathematics/college/73uwzp6gbkx0fyxtn8kmq6jheu308l6fxh.png)
![CV = (36.33)/(1100)](https://img.qammunity.org/2022/formulas/mathematics/college/fosk4ifjqr4ez6q2ll5k4pp84r4u89jox0.png)
![CV = 0.033](https://img.qammunity.org/2022/formulas/mathematics/college/mfp2w6ux0fxjqvlfbyuv6bvwup8ytrv3fc.png)