Answer:
P(AUB)'=2/15
Explanation:
According to the Question,
- Given That, A and B be two independent events. If P(A)=3/5 and P(B')=1/3.
So, P(B)=1-P(B') ⇒ P(B)=1-(1/3) ⇔ P(B)=2/3
- The Product Rule of Probability says For independent events P(A∩B)=P(A)×P(B)
P(A∩B)=3/5 × 2/3 ⇒ P(A∩B)=2/5
- We know, P(AUB)=P(A)+P(B)-P(A∩B)
Thus, P(AUB)= 3/5 + 2/3 - 2/5
P(AUB)=1/5 + 2/3
P(AUB)=(3+10)/15 ⇔P(AUB)=13/15
- Now, The Value Of P(AUB)'=1-P(AUB) ⇔ 1 - 13/15 ⇒ P(AUB)'=2/15