Answer:
Explanation:
From the given information:
The mean of the readings is:
![=(175+104+164+193+131+189+155+133+151+ 176)/(10)](https://img.qammunity.org/2022/formulas/mathematics/college/k1r9at7itqsegvx5ec56a2w2qetn9d2k17.png)
![= (1571)/(10)](https://img.qammunity.org/2022/formulas/mathematics/college/fe2oh489zcj7f1izz1b1tweolbouc30pub.png)
= 157.1
The standard deviation (SD) can be computed by using the expression:
![SD =\sqrt{ (\sum_f(x_i - \bar x)^2)/(n-1)}](https://img.qammunity.org/2022/formulas/mathematics/college/erfbh7sjrl78btykifkg2aiu1hhnwjyt0f.png)
![SD =\sqrt{ ((175-157.1)^2+(104-157.1)^2+(164-157.1)^2+...+(176-157.1)^2)/(10-1)}](https://img.qammunity.org/2022/formulas/mathematics/college/2fiwdkaluuu17e5902pim8f6vayjjppnzd.png)
Standard deviation = 28.195
∴
FOr the EDTA complexes;
The signal detection limit = (3*SD) +
![y_(blanks)](https://img.qammunity.org/2022/formulas/mathematics/college/4949uu46kpjvg2hkf66orvxyuk6hv0bjxe.png)
= (3*28.195) + 50
= 84.585 + 50
= 134.585
We need to point out that the value of the calibration curve given is too vague and it should be (1.75 x 10^9 M^-1) as oppose to (1.75 x 10^-9 M^-1)
The concentration of detection limit is:
![=(3 * SD)/(slope )](https://img.qammunity.org/2022/formulas/mathematics/college/mtt8ldbwq928dk2fpwfs3rad3l3op1j5wt.png)
![=(3 * 28.195)/(1.75 * 10^(9) \ M^(-1) )](https://img.qammunity.org/2022/formulas/mathematics/college/9q2xao7jhsk4a33tldsuiqd8r2aefl65uo.png)
![\mathbf{= 4.833* 10^(-8) \ M}](https://img.qammunity.org/2022/formulas/mathematics/college/506y4mlk9sv7boz9jf2bxdj9qwwesvxkov.png)
The lower limit of quantification is:
![=(10 * SD)/(slope )](https://img.qammunity.org/2022/formulas/mathematics/college/vnf00z1xbct4z8svur016t808mkme1cdvn.png)
![=(10 * 28.195)/(1.75 * 10^(9) \ M^(-1) )](https://img.qammunity.org/2022/formulas/mathematics/college/xyk76a3n62na4j0otrh2evhsh7xxxgys43.png)
![\mathbf{= 1.611 * 10^(-7) \ M}](https://img.qammunity.org/2022/formulas/mathematics/college/p2a0fk9pmpxw2mo7juknrvsrqd8w0t6s16.png)