Answer:
I think there is no solution.
Explanation:
Substitute:
Z = -3y-5x+25
X = 3y-2z-13
Put into the last formula:
14(3y-2z-13)-2y+3(-3y-5x+25) = 48
Then:
14(3y-2(-3y-5x+25)-13)-2y+3(-3y-5(3y-2z-13)) = 48
So:
14(3y-2(-3y-5(3y-2z-13)+25)-13)-2y+3(-3y-5(3y-2(-3y-5x+25)-13)) = 48
And so on.