Answer:
page 1:
51 years
$98.78
639546.64 (i think)
Page 2:
213 months
17.8 years
321 months
26.8 years
1128.9 months
88.8 years
I would probably choose the second plan because it's rather unlikely that i live past 90
Explanation:
page 1
Let's assume the payments are at the end of the month
66-15= 51 years
effective rate: .075/12=.00625
![700000=x((1+.00625)^(51*12)-1)/(.00625)\\x=98.77973387](https://img.qammunity.org/2022/formulas/mathematics/college/1bzl9q9r5ia6zwcfpkjdja62q82dxkn56p.png)
which i guess we can round to 98.78
700000-98.78*(51*12)= 639546.64
This number is really really high and so maybe you want to double check it
page 2
effective rate: .051/12=.00425
![700000=5000(1-(1+.00425)^(-n))/(.00425)\\.405=(1+.00425)^(-n)\\log_(1.00425).405=-n\\n=213](https://img.qammunity.org/2022/formulas/mathematics/college/flna397h8yeskd81czl5ff4w3g3hue6ipa.png)
213 months
213/12= 17.8 years
![700000=4000(1-(1+.00425)^(-n))/(.00425)\\.25625=(1.00425)^(-n)\\log_(1.00425).25625\\n=321](https://img.qammunity.org/2022/formulas/mathematics/college/ru5norasnxoez8q5cedu5hm4cql7z7cfps.png)
321 months
321/12=26.8 years
![700000=3000(1-(1+.00425)^(-n))/(.00425)\\.008333333=(1.0045)^(-n)\\log_(1.0045).00833333=-n\\n=1128.9](https://img.qammunity.org/2022/formulas/mathematics/college/pe4p36cbdw1w2cv0wv5hpa5uzp6cytyixq.png)
1128.9 months
1128.9/12= 94.1 years
1066 months
1066/12= 88.8 years