223k views
3 votes
If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple are written in increasing order but are not necessarily distinct

User Ascherman
by
3.0k points

1 Answer

2 votes

This question is incomplete, the complete question is;

If n is a positive integer, how many 5-tuples of integers from 1 through n can be formed in which the elements of the 5-tuple are written in increasing order but are not necessarily distinct.

In other words, how many 5-tuples of integers ( h, i , j , m ), are there with n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1 ?

Answer:

the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120

Explanation:

Given the data in the question;

Any quintuple ( h, i , j , m ), with n ≥ h ≥ i ≥ j ≥ k ≥ m ≥ 1

this can be represented as a string of ( n-1 ) vertical bars and 5 crosses.

So the positions of the crosses will indicate which 5 integers from 1 to n are indicated in the n-tuple'

Hence, the number of such quintuple is the same as the number of strings of ( n-1 ) vertical bars and 5 crosses such as;


\left[\begin{array}{ccccc}5&+&n&-&1\\&&5\\\end{array}\right] = \left[\begin{array}{ccc}n&+&4\\&5&\\\end{array}\right]

= [( n + 4 )! ] / [ 5!( n + 4 - 5 )! ]

= [( n + 4 )!] / [ 5!( n-1 )! ]

= [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120

Therefore, the number of 5-tuples of integers from 1 through n that can be formed is [ n( n+1 ) ( n+2 ) ( n+3 ) ( n+4 ) ] / 120

User Egil Hansen
by
3.2k points