Answer:
![(x + 2)/(3x - 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6px3n1feoj2vguwdv2rb1ad00a57gprah7.png)
Explanation:
Things you should before solving this question :-
where a and b are any two variables.
SIMPLIFYING THE EXPRESSION
![\frac{ {x}^(2) - 9 }{3 {x}^(2) + 8x - 3} / (x - 3)/(x + 2) \\](https://img.qammunity.org/2022/formulas/mathematics/high-school/u5zje01fotd1n7e9yj75iznejjxdz5xw8j.png)
using the identity discussed above
![\frac{ (x + 3)(x - 3) }{3 {x}^(2) + 8x - 3} / (x - 3)/(x + 2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vw4lodygwh2mxqaxrmwq2pw5rp9okoodjc.png)
simplifying 3x² + 8x - 3
![\frac{ {x}^(2) - 9 }{3 {x}^(2) + 9x -x - 3} / (x - 3)/(x + 2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ggra50eg8myftapw68pyhxum47uw9p8eeo.png)
as 8x can be written as 9x - x
![\frac{ (x - 3)(x + 3) }{3 {x}(x + 3) - 1(x + 3)} / (x - 3)/(x + 2) \\ \frac{ (x - 3)(x + 3) }{(3 {x} - 1)(x + 3) } / (x - 3)/(x + 2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7530u4ocbqte3jwurzdin1l0hm1m75rtq3.png)
flipping the fraction that follows division sign and inserting multiply in place of divide
![\frac{ (x - 3)(x + 3) }{(3 {x} - 1)(x + 3) } * (x + 2)/(x - 3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gyqeha6uu6xgpu4q0vbj0rikc9wua8yflf.png)
canceling (x - 3) and (x + 3) as they're common in both denominator and numerator
![(x + 2)/(3x - 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6px3n1feoj2vguwdv2rb1ad00a57gprah7.png)