178k views
1 vote
Sin0=12/37 find tan0

User Flowera
by
4.9k points

1 Answer

5 votes

Answer:


\large{ \tt{❃ \: EXPLANATION}} :

  • We're provide - Sin θ =
    (12)/(37) which means 12 is the perpendicular & 37 is the hypotenuse [ Since Sin θ =
    \tt{ (p)/(h)} ] . We're asked to find out tan θ ].


\large{ \tt{❁ \: USING \: PYTHAGORAS \: THEOREM}} :


\large{ \tt{❊ \: {h}^(2) = {p}^(2) + {b}^(2) }}


\large{ \tt{⇢ {p}^(2) + {b}^(2) = {h}^(2) }}


\large{ \tt{⇢ \: {b}^(2) = {h}^(2) - {p}^(2) }}


\large{ \tt{⇢ \: {b}^(2) = {37}^(2) - {12}^(2) }}


\large{ \tt{⇢ \: {b}^(2) = 1369 - 144}}


\large{ \tt{ ⇢{b}^(2) = 1225}}


\large{ \tt{⇢ \: b = √(1225)}}


\large{ \tt{⇢ \: b = 35 \: \text {units}}}

  • Now , We know - Tan θ=
    \tt{ (perpendicular)/(base) }. Just plug the values :


\large{ \tt{➝ \: Tan \: \theta = (p)/(b) = \boxed{ \tt{ (12)/(35) }}}}

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

User Rohan Varma
by
4.3k points