60,717 views
28 votes
28 votes
A rectangular prism with a volume of 10 cubic units is filled with cubes with side length of 1/2 unit

User Detect
by
2.7k points

2 Answers

14 votes
14 votes

Solution:

We know that:


1. \space\ V_(Rectangular \space\ prism) = 10 \text\] units^(3)\\\\2. \space\ L_(Small \space\ cube) = (1)/(2) \space\ units\\\\ 3. \space\ V_(Small \space\ cube) = L ^(3)

Step-1: Find the volume of the small cube.


V_(Small \space\ cube) = L ^(3)


V_(Small \space\ cube) = ((1)/(2)) ^(3)


V_(Small \space\ cube) = ((1)/(2)) ((1)/(2)) ((1)/(2))


V_(Small \space\ cube) = (1)/(8) \space\ units^(3)

Step-2: Divide.


(10)/((1)/(8) )\\\\ \Rrightarrow(10)(8)\\ \\ \Rrightarrow 80

Hence, 80 cubes can be fit in the rectangular prism.

User Bwooce
by
2.5k points
15 votes
15 votes

volume of rectangular prism = 10 units³

volume of each cube =
(1)/(2) *(1)/(2) *(1)/(2) = (1)/(8) units^3

required cubes =
(10)/( (1)/(8) )= 80

User Ali H
by
2.4k points