Answer:
![\int\limits {(3x^3 + 4x^2 + 9x + 4)/((x^2 + 1)(x^2 +3))} \, dx = (3)/(2)\ln(x^2 + 1) + 4√(3)\tan^(-1)((x)/(\sqrt 3) )+ c](https://img.qammunity.org/2022/formulas/mathematics/college/pcofu0r719v2l0c81bz93ickfio9gb30l2.png)
Explanation:
Given
![\int\limits {(3x^3 + 4x^2 + 9x + 4)/((x^2 + 1)(x^2 +3))} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/rhfgw40zbiokuv7ygedvym35j1q2wkdlza.png)
Required
Integrate
Using partial fraction, we have:
![(3x^3 + 4x^2 + 9x + 4)/((x^2 + 1)(x^2 +3))} = (Ax+B)/(x^2 + 1) + (Cx + D)/(x^2 + 3)](https://img.qammunity.org/2022/formulas/mathematics/college/qihwc8p1v1ifub3pql9xj9b64pid2urppp.png)
Take LCM
![(3x^3 + 4x^2 + 9x + 4)/((x^2 + 1)(x^2 +3))} = ((Ax+B)(x^2 + 3)+ (Cx + D)(x^2 + 1))/((x^2 + 1)(x^2 + 3))](https://img.qammunity.org/2022/formulas/mathematics/college/a2zgbm8us0c5sy00c7r5mdljl4vv5w6edy.png)
Cancel out the denominators
![3x^3 + 4x^2 + 9x + 4} = (Ax+B)(x^2 + 3)+ (Cx + D)(x^2 + 1)](https://img.qammunity.org/2022/formulas/mathematics/college/p6i8au59df025iu1ct55tfrkb8s5z1a1si.png)
Open brackets
![3x^3 + 4x^2 + 9x + 4} = Ax^3+Bx^2 + 3Ax +3B+ Cx^3 + Dx^2 + Cx + D](https://img.qammunity.org/2022/formulas/mathematics/college/ub8drnrlp7h1o2o0qjvrg19k2w72vk9lz8.png)
Collect like terms
![3x^3 + 4x^2 + 9x + 4 = Ax^3+ Cx^3+Bx^2+ Dx^2 + 3Ax+ Cx +3B + D](https://img.qammunity.org/2022/formulas/mathematics/college/lfw0pc3pjl6tz6eifk49m5vyo3gvubrsli.png)
Compare like terms on opposite sides
![A + C = 3](https://img.qammunity.org/2022/formulas/mathematics/college/a38dhkfouanxyf25ewdrbunqpa5fhwfok4.png)
![B + D = 4](https://img.qammunity.org/2022/formulas/mathematics/college/rb63nmm9rkd6d1sarjww350y9ekk9hd2jw.png)
![3A + C = 9](https://img.qammunity.org/2022/formulas/mathematics/college/jds7hg9yj5nkzwps0h6nzpz0bpuim8l93z.png)
![3B + D = 4](https://img.qammunity.org/2022/formulas/mathematics/college/chlyyrj9jpql8jko91uy5wcoxbyyh78m6q.png)
Subtract
from
![3B + D = 4](https://img.qammunity.org/2022/formulas/mathematics/college/chlyyrj9jpql8jko91uy5wcoxbyyh78m6q.png)
![3B - B + D - D = 4 - 4](https://img.qammunity.org/2022/formulas/mathematics/college/n78kl93k782akaxezaxqdtfwtx4jq2i0vc.png)
![2B + 0 = 0](https://img.qammunity.org/2022/formulas/mathematics/college/x0st38j1kdnj2lbjoor0l9dhse7swprass.png)
![2B = 0](https://img.qammunity.org/2022/formulas/mathematics/college/jyx8w8p02oqn00w7xizdgkj36uwlp8aiic.png)
![B = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ng55ibjg0jqi99tjubpqh59nddyfv385p2.png)
![B + D = 4](https://img.qammunity.org/2022/formulas/mathematics/college/rb63nmm9rkd6d1sarjww350y9ekk9hd2jw.png)
![D =4 - B](https://img.qammunity.org/2022/formulas/mathematics/college/5y7l2qljrarxsykvypcq4k99ycqdm1gi1l.png)
![D =4 - 0](https://img.qammunity.org/2022/formulas/mathematics/college/8se9xfk5izidvknwras2vnn0ds8d6lj8nx.png)
![D =4](https://img.qammunity.org/2022/formulas/mathematics/college/4cvy4h2ybs07nzomx3dy82ws14xuowr064.png)
Subtract
from
![3A + C = 9](https://img.qammunity.org/2022/formulas/mathematics/college/jds7hg9yj5nkzwps0h6nzpz0bpuim8l93z.png)
![3A - A + C - C = 9 - 3](https://img.qammunity.org/2022/formulas/mathematics/college/ye1nc386sn2znqthke3ubesqrffmjjt8xv.png)
![2A = 6](https://img.qammunity.org/2022/formulas/mathematics/college/phqoza74m6q98jpbiewni3wjelhqoz0wlw.png)
![A = 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/957ej6iw4dj1ylazcbkwgx3jw9i2sm1d9x.png)
![A + C = 3](https://img.qammunity.org/2022/formulas/mathematics/college/a38dhkfouanxyf25ewdrbunqpa5fhwfok4.png)
![C = 3 - A](https://img.qammunity.org/2022/formulas/mathematics/college/14ljjuas6vahpfghjmuifxvjgz6j0lio4c.png)
![C = 3 - 3](https://img.qammunity.org/2022/formulas/mathematics/college/kujjuwrqnwf6so1my58iq43iv4lrtlwai7.png)
![C = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/oqdv74o6ly4vnnycy7kjr4gk43a3thextr.png)
So, we have:
![D =4](https://img.qammunity.org/2022/formulas/mathematics/college/4cvy4h2ybs07nzomx3dy82ws14xuowr064.png)
![(3x^3 + 4x^2 + 9x + 4)/((x^2 + 1)(x^2 +3))} = (Ax+B)/(x^2 + 1) + (Cx + D)/(x^2 + 3)](https://img.qammunity.org/2022/formulas/mathematics/college/qihwc8p1v1ifub3pql9xj9b64pid2urppp.png)
![(3x^3 + 4x^2 + 9x + 4)/((x^2 + 1)(x^2 +3))} = (3x+0)/(x^2 + 1) + (0*x + 4)/(x^2 + 3)](https://img.qammunity.org/2022/formulas/mathematics/college/wa5mvn1on0rb9gai2nd9533gezil6yh17x.png)
![(3x^3 + 4x^2 + 9x + 4)/((x^2 + 1)(x^2 +3))} = (3x)/(x^2 + 1) + (4)/(x^2 + 3)](https://img.qammunity.org/2022/formulas/mathematics/college/fjnp0q3p3oa7v4jc3r07sm5lmzxauo8tsc.png)
The integral becomes:
![\int\limits {[(3x)/(x^2 + 1) + (4)/(x^2 + 3)]} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/79j18mhhd9kao9qpk27bjuzhmwwxakgzr8.png)
Split:
![\int\limits {(3x)/(x^2 + 1) \, dx + \int\limits {(4)/(x^2 + 3)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/y5efi0m80im25ky5szj1dvthotye6zf21z.png)
Split
![(3)/(2) \int\limits {(2x)/(x^2 + 1) \, dx + 4\int\limits {(1)/(x^2 + 3)} \ dx](https://img.qammunity.org/2022/formulas/mathematics/college/lrqojinxo4ge8afhmml4gr27sc5g9j0teg.png)
Integrate
![(3)/(2)\ln(x^2 + 1) + 4√(3)\tan^(-1)(x)/(\sqrt 3) + c](https://img.qammunity.org/2022/formulas/mathematics/college/oe1k5kahiv1w4yzcg7wchol35613q82kz8.png)
Hence:
![\int\limits {(3x^3 + 4x^2 + 9x + 4)/((x^2 + 1)(x^2 +3))} \, dx = (3)/(2)\ln(x^2 + 1) + 4√(3)\tan^(-1)((x)/(\sqrt 3) )+ c](https://img.qammunity.org/2022/formulas/mathematics/college/pcofu0r719v2l0c81bz93ickfio9gb30l2.png)