Answer:
![\rm \displaystyle \theta = \{ {150}^( \circ) , {240}^( \circ) \}](https://img.qammunity.org/2022/formulas/mathematics/high-school/o8orjoemqpxtc6snn97lv9dkfhgad15fql.png)
Explanation:
we would like to solve the following equation:
![\displaystyle 2 \sin( \theta) \tan( \theta) = - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/a3tdmycjc6hk5ixdlvlotyhez8yt19c1vl.png)
to do so we need to put the equation in term of a function of a angle therefore rewrite tanθ:
![\displaystyle 2 \sin( \theta) \cdot ( \sin( \theta) )/( \cos( \theta) ) = - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/ramymhrziffgiiyco9n6rj0dvzh71tujtf.png)
simplify multiplication:
![\displaystyle ( 2\sin^(2) ( \theta) )/( \cos( \theta) ) = - 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/ibkm2e03nbssdfczlfxgktnnrcnggyie2e.png)
cross multiplication:
![\displaystyle 2\sin^(2) ( \theta) = - 3 \cos( \theta)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5h0ub1t1n0pa1psom7cvb84yk7poime264.png)
isolate -3cosθ to left hand side and change its sign:
![\displaystyle 2\sin^(2) ( \theta) + 3 \cos( \theta) = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/s3t1yhbzlz5tzae8d8m9t9ebcfp50rcwc7.png)
well we can rewrite sin²θ by applying Pythagorean theorem and that yields:
![\rm \displaystyle 2(1 - \cos^(2) ( \theta)) + 3 \cos( \theta) = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ky4tezfbeje0nfntzj7ja4xp3oxlatrj3z.png)
distribute:
![\rm \displaystyle 2 - 2\cos^(2) ( \theta) + 3 \cos( \theta) = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/a5x9c2mqr9p0i2e3hamopwos45h89ydhll.png)
now notice that our equation ended up with a pattern and that is Quadratic thus by letting cosθ be x to transform the equation:
![\rm \displaystyle 2 - 2 {x}^(2) + 3 x = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/blbmrybbpjijk33ya8s5ul2lcu8g9y4idz.png)
rearrange it to standard form:
![\rm \displaystyle - 2 {x}^(2) + 3 x + 2 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/zfthwarjfbqva6js1gx1ks52dgz6v007wm.png)
divide both sides by -1:
![\rm \displaystyle 2 {x}^(2) - 3 x - 2 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/3cqfu1dnv4hhzgwoimy2zhqoo14aky78x7.png)
well we can factor the quadratic to do so rewrite -3x as -4x+x:
![\rm \displaystyle 2 {x}^(2) - 4 x + x - 2 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/mot6p7kj1qo8ug9o1a2dh8ypt402vztdyh.png)
factor out 2x:
![\rm \displaystyle 2x ({x}^{} - 2)+ x - 2 = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/fl2w28anzy1ay8337b6d5k00p5qmd3iwbg.png)
factor out 1:
![\rm \displaystyle 2x ({x}^{} - 2)+ 1(x - 2 ) = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/957bo6ro8imwzg0ehx57iinu9lf1nl3ajf.png)
group:
![\rm \displaystyle (2x + 1)(x - 2 ) = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/f0n88769c64626kwiask9qq9wp0q349t1n.png)
by Zero Product property we obtain:
![\rm \displaystyle \begin{cases} 2x + 1 = 0\\ x - 2 = 0 \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kvu09gc2bc4jmniua9zd9nueo5mc4joby9.png)
cancel 1 from the first equation and add 2 to the e equation:
![\rm \displaystyle \begin{cases} 2x = - 1\\ x = 2\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/pqnz2dzxz10wz18hu9ltgxv5yy19v09h70.png)
substitute back:
![\rm \displaystyle \begin{cases} 2 \cos( \theta) = - 1\\ \cos( \theta) = 2\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/cfyo203hbnf7r04rcj4y7p609snqwxyj29.png)
since cosθ is only defined for the interval [1,-1] the second equation is false for any value of θ but we can still continue the first equation
![\rm \displaystyle \begin{cases} 2 \cos( \theta) = - 1\\ \cos( \theta) \\eq 2\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/q6vcoavazx7mhcvg0rkc969jp4fx978q8p.png)
divide both sides by 2:
![\rm \displaystyle \cos( \theta) = \frac{ - 1} {2}](https://img.qammunity.org/2022/formulas/mathematics/high-school/grz8aff1qq3cazkdi83tr1f2cwir52ay0m.png)
by unit circle we acquire:
![\begin{cases} \rm \displaystyle \theta = {150}^( \circ) \\ \theta = {240}^( \circ) \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/2i767fouc2geriwwe3s8sd8cssr2597nvv.png)
add period of 2nπ:
![\begin{cases} \rm \displaystyle \theta = {150}^( \circ) + 2n\pi\\ \theta = {240}^( \circ) + 2n\pi \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/grbbb87p3uskaqx1mae5hvbsxjvjr50h0w.png)
for the interval [0,2π) θ is only defined when n is 0 Thus:
![\begin{cases} \rm \displaystyle \theta = {150}^( \circ) + 2(0)\pi\\ \theta = {240}^( \circ) + 2(0)\pi \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/i5y8vkg9opli7btwkit5u766ylzy1x3m6e.png)
simplify:
![\begin{cases} \rm \displaystyle \theta = {150}^( \circ) \\ \theta = {240}^( \circ) \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/2i767fouc2geriwwe3s8sd8cssr2597nvv.png)
hence,
θ is equal to 150° and 240°