Answer:
Around 0.73% of adults in the USA have stage 2 high blood pressure
Explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 121 and standard deviation of 16.
This means that

Around what percentage of adults in the USA have stage 2 high blood pressure
The proportion is 1 subtracted by the p-value of Z when X = 160. So



has a p-value of 0.9927.
1 - 0.9927 = 0.0073
0.0073*100% = 0.73%
Around 0.73% of adults in the USA have stage 2 high blood pressure