269,880 views
44 votes
44 votes
Find the derivative of


\\ \rm\Rrightarrow y=(sinx+cosx)/(sinx-cosx)

Proper explanation is mandatory


Note:-
Spams/sHort/wrong answers will be deleted on the spot .



User Sobutterysosmooth
by
2.6k points

2 Answers

18 votes
18 votes

Answer:


y'=-(2)/((six-cosx)^(2) )

Explanation:

⇒Answer in the attachment.

Find the derivative of \\ \rm\Rrightarrow y=(sinx+cosx)/(sinx-cosx) Proper explanation-example-1
Find the derivative of \\ \rm\Rrightarrow y=(sinx+cosx)/(sinx-cosx) Proper explanation-example-2
User Paul Santosh
by
3.1k points
20 votes
20 votes

Answer:

y' = 1 / sinxcosx

Explanation:

Given :

y = sinx + cosx / sinx - cosx

Applying quotient rule :

y' = [(sinx - cosx)(cosx - sinx) - (sinx + cosx)(cosx + sinx)] / (sinx -

cosx)²

y' = [sinxcosx - cos²x - sin²x + sinxcosx - (sinxcosx + cos²x + sin²x + sinxcosx)] / (sinx - cosx)²

y' = 2sinxcosx - 2sinxcosx - 2cos²x - 2sin²x / (sinx -cosx)²

y' = -2(sin²x + cos²x) / (sinx - cosx)²

y' = -2 / (sinx - cosx)²

y' = -2 / sin²x - 2sinxcosx + cos²x

y' = -2 / -2sinxcosx

y' = 1 / sinxcosx [⇒ Final answer]

User Wnoise
by
3.1k points