Answer:
y' = 1 / sinxcosx
Explanation:
Given :
y = sinx + cosx / sinx - cosx
Applying quotient rule :
y' = [(sinx - cosx)(cosx - sinx) - (sinx + cosx)(cosx + sinx)] / (sinx -
cosx)²
y' = [sinxcosx - cos²x - sin²x + sinxcosx - (sinxcosx + cos²x + sin²x + sinxcosx)] / (sinx - cosx)²
y' = 2sinxcosx - 2sinxcosx - 2cos²x - 2sin²x / (sinx -cosx)²
y' = -2(sin²x + cos²x) / (sinx - cosx)²
y' = -2 / (sinx - cosx)²
y' = -2 / sin²x - 2sinxcosx + cos²x
y' = -2 / -2sinxcosx
y' = 1 / sinxcosx [⇒ Final answer]