91.1k views
1 vote
Annual windstorm losses, X and Y, in two different regions are independent, and each is uniformly distributed on the interval [0, 10]. Calculate the covariance of X and Y, given that X+ Y < 10.

1 Answer

4 votes

Answer:


Cov(X,Y) = -( 25)/(9)

Explanation:

Given


Interval =[0,10]


X + Y < 10

Required


Cov(X,Y)

First, we calculate the joint distribution of X and Y

Plot
X + Y < 10

So, the joint pdf is:


f(X,Y) = (1)/(Area) --- i.e. the area of the shaded region

The shaded area is a triangle that has: height = 10; width = 10

So, we have:


f(X,Y) = (1)/(0.5 * 10 * 10)


f(X,Y) = (1)/(50)


Cov(X,Y) is calculated as:


Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Calculate E(XY)


E(XY) =\int\limits^X_0 {\int\limits^Y_0 {(XY)/(50)} \, dY} \, dX


X + Y < 10

Make Y the subject


Y < 10 - X

So, we have:


E(XY) =\int\limits^(10)_0 {\int\limits^(10 - X)_0 {(XY)/(50)} \, dY} \, dX

Rewrite as:


E(XY) =(1)/(50)\int\limits^(10)_0 {\int\limits^(10 - X)_0 {XY}} \, dY} \, dX

Integrate Y


E(XY) =(1)/(50)\int\limits^(10)_0 {(XY^2)/(2)}} }|\limits^(10 - X)_0 \, dX

Expand


E(XY) =(1)/(50)\int\limits^(10)_0 {(X(10 - X)^2)/(2) - (X(0)^2)/(2)}} }\ dX


E(XY) =(1)/(50)\int\limits^(10)_0 {(X(10 - X)^2)/(2)}} }\ dX

Rewrite as:


E(XY) =(1)/(100)\int\limits^(10)_0 X(10 - X)^2\ dX

Expand


E(XY) =(1)/(100)\int\limits^(10)_0 X*(100 - 20X + X^2)\ dX


E(XY) =(1)/(100)\int\limits^(10)_0 100X - 20X^2 + X^3\ dX

Integrate


E(XY) =(1)/(100) [(100X^2)/(2) - (20X^3)/(3) + (X^4)/(4)]|\limits^(10)_0

Expand


E(XY) =(1)/(100) ([(100*10^2)/(2) - (20*10^3)/(3) + (10^4)/(4)] - [(100*0^2)/(2) - (20*0^3)/(3) + (0^4)/(4)])


E(XY) =(1)/(100) ([(10000)/(2) - (20000)/(3) + (10000)/(4)] - 0)


E(XY) =(1)/(100) ([5000 - (20000)/(3) + 2500])


E(XY) =50 - (200)/(3) + 25

Take LCM


E(XY) = (150-200+75)/(3)


E(XY) = (25)/(3)

Calculate E(X)


E(X) =\int\limits^(10)_0 {\int\limits^(10 - X)_0 {(X)/(50)}} \, dY} \, dX

Rewrite as:


E(X) =(1)/(50)\int\limits^(10)_0 {\int\limits^(10 - X)_0 {X}} \, dY} \, dX

Integrate Y


E(X) =(1)/(50)\int\limits^(10)_0 { (X*Y)|\limits^(10 - X)_0 \, dX

Expand


E(X) =(1)/(50)\int\limits^(10)_0 ( [X*(10 - X)] - [X * 0])\ dX


E(X) =(1)/(50)\int\limits^(10)_0 ( [X*(10 - X)]\ dX


E(X) =(1)/(50)\int\limits^(10)_0 10X - X^2\ dX

Integrate


E(X) =(1)/(50)(5X^2 - (1)/(3)X^3)|\limits^(10)_0

Expand


E(X) =(1)/(50)[(5*10^2 - (1)/(3)*10^3)-(5*0^2 - (1)/(3)*0^3)]


E(X) =(1)/(50)[5*100 - (1)/(3)*10^3]


E(X) =(1)/(50)[500 - (1000)/(3)]


E(X) = 10- (20)/(3)

Take LCM


E(X) = (30-20)/(3)


E(X) = (10)/(3)

Calculate E(Y)


E(Y) =\int\limits^(10)_0 {\int\limits^(10 - X)_0 {(Y)/(50)}} \, dY} \, dX

Rewrite as:


E(Y) =(1)/(50)\int\limits^(10)_0 {\int\limits^(10 - X)_0 {Y}} \, dY} \, dX

Integrate Y


E(Y) =(1)/(50)\int\limits^(10)_0 { ((Y^2)/(2))|\limits^(10 - X)_0 \, dX

Expand


E(Y) =(1)/(50)\int\limits^(10)_0 ( [((10 - X)^2)/(2)] - [((0)^2)/(2)])\ dX


E(Y) =(1)/(50)\int\limits^(10)_0 ( [((10 - X)^2)/(2)] )\ dX


E(Y) =(1)/(50)\int\limits^(10)_0 [(100 - 20X + X^2)/(2)] \ dX

Rewrite as:


E(Y) =(1)/(100)\int\limits^(10)_0 [100 - 20X + X^2] \ dX

Integrate


E(Y) =(1)/(100)( [100X - 10X^2 + (1)/(3)X^3]|\limits^(10)_0)

Expand


E(Y) =(1)/(100)( [100*10 - 10*10^2 + (1)/(3)*10^3] -[100*0 - 10*0^2 + (1)/(3)*0^3] )


E(Y) =(1)/(100)[100*10 - 10*10^2 + (1)/(3)*10^3]


E(Y) =10 - 10 + (1)/(3)*10


E(Y) =(10)/(3)

Recall that:


Cov(X,Y) = E(XY) - E(X) \cdot E(Y)


Cov(X,Y) = (25)/(3) - (10)/(3)*(10)/(3)


Cov(X,Y) = (25)/(3) - (100)/(9)

Take LCM


Cov(X,Y) = (75- 100)/(9)


Cov(X,Y) = -( 25)/(9)

Annual windstorm losses, X and Y, in two different regions are independent, and each-example-1
User Renegade
by
3.7k points