Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
Algebra I
- Terms/Coefficients
- Factoring
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2022/formulas/mathematics/college/c6fshhoq1mws6w0d0la17c7k2dcytwd8kg.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
Explanation:
Step 1: Define
Identify
y = (2x - 5)²(5 - x⁵)²
Step 2: Differentiate
- Derivative Rule [Product Rule]:
^2 + (2x - 5)^2(d)/(dx)[(5 - x^5)^2]](https://img.qammunity.org/2022/formulas/mathematics/college/8mc3insf8j0mx22ndowiob0hg8mncpomt6.png)
- Chain Rule [Basic Power Rule]:
![\displaystyle y' = [2(2x - 5)^(2-1) \cdot (d)/(dx)[2x]](5 - x^5)^2 + (2x - 5)^2[2(5 - x^5)^(2-1) \cdot (d)/(dx)[-x^5]]](https://img.qammunity.org/2022/formulas/mathematics/college/ej2v5vhxw6f62cenkxo3xxtqbx3u2fcedz.png)
- Simplify:
![\displaystyle y' = [2(2x - 5) \cdot (d)/(dx)[2x]](5 - x^5)^2 + (2x - 5)^2[2(5 - x^5) \cdot (d)/(dx)[-x^5]]](https://img.qammunity.org/2022/formulas/mathematics/college/p7i91fhunnhnvqdl8o3jn8muq63yyir7nh.png)
- Basic Power Rule:
^2 + (2x - 5)^2[2(5 - x^5) \cdot -5x^(5 - 1)]](https://img.qammunity.org/2022/formulas/mathematics/college/hqpzrrp0udwlolqigpjxvehi8x590214ld.png)
- Simplify:
^2 + (2x - 5)^2[2(5 - x^5) \cdot -5x^4]](https://img.qammunity.org/2022/formulas/mathematics/college/bq6e9m6mtk13odtiva57zreboztf5sbudw.png)
- Multiply:

- Factor:
![\displaystyle y' = 2(2x - 5)(5 - x^5)[2(5 - x^5) - 5x^4(2x - 5)]](https://img.qammunity.org/2022/formulas/mathematics/college/3ffepf3w08barf70ultnqekcw496f0z6nl.png)
- [Distributive Property] Distribute 2:
![\displaystyle y' = 2(2x - 5)(5 - x^5)[10 - 2x^5 - 5x^4(2x - 5)]](https://img.qammunity.org/2022/formulas/mathematics/college/li27vm8npb0sl9h96wi3lpj55aonao2uy8.png)
- [Distributive Property] Distribute 5x⁴:
![\displaystyle y' = 2(2x - 5)(5 - x^5)[10 - 2x^5 - 10x^5 + 25x^4]](https://img.qammunity.org/2022/formulas/mathematics/college/6szfa5l36y8vewr76taaqz2w1wggs0rx5t.png)
- [Addition] Combine like terms (x⁵):

- Rewrite:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e